1.Cell autophagy and virus infection.
Chinese Journal of Virology 2013;29(1):76-84
Autophagy is a catabolic process including self-degradation of intracellular components via the lysosomal machinery. The biological behavior can be regarded as defense mechanism, maintaining the cell growth, metabolism and homeostasis etc. To date, plenty of autophagy related genes have been identified. In addition, it has been recognized that autophagy plays important roles in the context of virus infection: it can transport viruses from cytoplasm to lysosome to degrade viruses; it can transfer viral nucleic acid to intracellular sensors to activate innate immunity; it can also present viral antigens to MHC class II molecules to activate adaptive immune responses. Autophagy may serve as a double-edged sword to intracellular pathogens. On one side, autophagy may degrade and clear invading microorganisms by xenophagy; on the other side, some microorganisms may develop mechanisms to escape from autophagy for their survival. In this paper, the notion of autophay and the function of autophagy related genes are reviewed. Furthermore, the association of autophagy with a variety of viruses is discussed.
Animals
;
Autophagy
;
physiology
;
Humans
;
Virus Diseases
;
immunology
2.Autophagy in Innate Recognition of Pathogens and Adaptive Immunity.
Yonsei Medical Journal 2012;53(2):241-247
Autophagy is a specialized cellular pathway involved in maintaining homeostasis by degrading long-lived cellular proteins and organelles. Recent studies have demonstrated that autophagy is utilized by immune systems to protect host cells from invading pathogens and regulate uncontrolled immune responses. During pathogen recognition, induction of autophagy by pattern recognition receptors leads to the promotion or inhibition of consequent signaling pathways. Furthermore, autophagy plays a role in the delivery of pathogen signatures in order to promote the recognition thereof by pattern recognition receptors. In addition to innate recognition, autophagy has been shown to facilitate MHC class II presentation of intracellular antigens to activate CD4 T cells. In this review, we describe the roles of autophagy in innate recognition of pathogens and adaptive immunity, such as antigen presentation, as well as the clinical relevance of autophagy in the treatment of human diseases.
Adaptive Immunity/immunology/*physiology
;
Animals
;
Antigen Presentation/immunology/physiology
;
Autophagy/immunology/*physiology
;
Humans
;
Major Histocompatibility Complex/immunology/physiology
3.Intersection of autophagy with pathways of antigen presentation.
Natalie L PATTERSON ; Justine D MINTERN
Protein & Cell 2012;3(12):911-920
Traditionally, macroautophagy (autophagy) is viewed as a pathway of cell survival. Autophagy ensures the elimination of damaged or unwanted cytosolic components and provides a source of cellular nutrients during periods of stress. Interestingly, autophagy can also directly intersect with, and impact, other major pathways of cellular function. Here, we will review the contribution of autophagy to pathways of antigen presentation. The autophagy machinery acts to modulate both MHCI and MHCII antigen presentation. As such autophagy is an important participant in pathways that elicit host cell immunity and the elimination of infectious pathogens.
Animals
;
Antigen Presentation
;
Autophagy
;
HLA Antigens
;
immunology
;
Humans
;
Thymus Gland
;
cytology
;
immunology
4.Autophagy and bacterial infectious diseases.
Jae Min YUK ; Tamotsu YOSHIMORI ; Eun Kyeong JO
Experimental & Molecular Medicine 2012;44(2):99-108
Autophagy is a housekeeping process that maintains cellular homeostasis through recycling of nutrients and degradation of damaged or aged cytoplasmic constituents. Over the past several years, accumulating evidence has suggested that autophagy can function as an intracellular innate defense pathway in response to infection with a variety of bacteria and viruses. Autophagy plays a role as a specialized immunologic effector and regulates innate immunity to exert antimicrobial defense mechanisms. Numerous bacterial pathogens have developed the ability to invade host cells or to subvert host autophagy to establish a persistent infection. In this review, we have summarized the recent advances in our understanding of the interaction between antibacterial autophagy (xenophagy) and different bacterial pathogens.
Animals
;
Autophagy/*physiology
;
Bacterial Infections/*immunology/metabolism
;
Humans
;
Immunity, Innate/physiology
;
Reactive Oxygen Species/metabolism
5.NOD-Like Receptors in Infection, Immunity, and Diseases.
Young Keun KIM ; Jeon Soo SHIN ; Moon H NAHM
Yonsei Medical Journal 2016;57(1):5-14
Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are pattern-recognition receptors similar to toll-like receptors (TLRs). While TLRs are transmembrane receptors, NLRs are cytoplasmic receptors that play a crucial role in the innate immune response by recognizing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Based on their N-terminal domain, NLRs are divided into four subfamilies: NLRA, NLRB, NLRC, and NLRP. NLRs can also be divided into four broad functional categories: inflammasome assembly, signaling transduction, transcription activation, and autophagy. In addition to recognizing PAMPs and DAMPs, NLRs act as a key regulator of apoptosis and early development. Therefore, there are significant associations between NLRs and various diseases related to infection and immunity. NLR studies have recently begun to unveil the roles of NLRs in diseases such as gout, cryopyrin-associated periodic fever syndromes, and Crohn's disease. As these new associations between NRLs and diseases may improve our understanding of disease pathogenesis and lead to new approaches for the prevention and treatment of such diseases, NLRs are becoming increasingly relevant to clinicians. In this review, we provide a concise overview of NLRs and their role in infection, immunity, and disease, particularly from clinical perspectives.
Autophagy/immunology
;
Carrier Proteins
;
Humans
;
*Immunity, Innate
;
Inflammasomes
;
Nod Signaling Adaptor Proteins/immunology/*metabolism
;
Pathogen-Associated Molecular Pattern Molecules
;
Receptors, Cytoplasmic and Nuclear/immunology/*metabolism
;
Receptors, Pattern Recognition/*immunology
;
*Signal Transduction
;
Toll-Like Receptors/metabolism
6.Association of autophagy related gene polymorphisms with neutrophilic airway inflammation in adult asthma.
Duy Le PHAM ; Seung Hyun KIM ; Purevsuren LOSOL ; Eun Mi YANG ; Yoo Seob SHIN ; Young Min YE ; Hae Sim PARK
The Korean Journal of Internal Medicine 2016;31(2):375-385
BACKGROUND/AIMS: Role of autophagy in neutrophil function and the association of autophagy and autophagy related (ATG) gene polymorphisms with asthma susceptibility were suggested. In this study, we investigated the genetic association of ATG5 and ATG7 polymorphisms with asthma risk, severity and neutrophilic airway inflammation. METHODS: We recruited 408 asthma patients and 201 healthy controls. Sputum neutrophil counts were determined by H&E staining. Serum interleukin 8 (IL-8) levels were measured by enzyme-linked immunosorbent assay (ELISA). Genetic polymorphisms of ATG5 (-769T>C, -335G>A, and 8830C>T) and ATG7 (-100A>G and 25108G>C) were genotyped. The functional activities of ATG5 -769T>C and -335G>A variants were investigated by luciferase reporter assays. RESULTS: No associations of ATG5 and ATG7 polymorphisms with asthma susceptibility and severity were found. ATG5 -769T>C and -335G>A were in complete linkage disequilibrium. In the asthma group, GA/AA genotypes at ATG5 -335G>A were associated with higher neutrophil counts in sputum (p < 0.05); CC/TT genotype at ATG5 8830C>T associated with lower FEV1% predicted value (p < 0.05). DNA fragments containing ATG5 -769T and -335G alleles had higher promoter activities compared to those with -769C and -335A in both human airway epithelial cells (A549, p < 0.01) and human mast cell (HMC-1, p < 0.001). GG and CC genotype at ATG7 -100A>G and 25108G>C were significantly associated with high serum levels of IL-8 (p < 0.05 for both variants). CONCLUSIONS: Genetic polymorphisms of ATG5 and ATG7 could contribute to neutrophilic airway inflammation in the pathogenesis of adult asthma.
Adolescent
;
Adult
;
Asthma/blood/*genetics/immunology/pathology
;
Autophagy/*genetics
;
Autophagy-Related Protein 5/*genetics
;
Autophagy-Related Protein 7/*genetics
;
Case-Control Studies
;
Cell Line
;
Female
;
Gene Frequency
;
Genes, Reporter
;
Genetic Predisposition to Disease
;
Haplotypes
;
Heterozygote
;
Homozygote
;
Humans
;
Interleukin-8/blood
;
Male
;
Middle Aged
;
Neutrophil Infiltration/*genetics
;
Neutrophils/immunology/metabolism/*pathology
;
Phenotype
;
*Polymorphism, Single Nucleotide
;
Promoter Regions, Genetic
;
Risk Factors
;
Severity of Illness Index
;
Transfection
;
Young Adult
7.Inactivated Sendai Virus Induces ROS-dependent Apoptosis and Autophagy in Human Prostate Cancer Cells.
Miao QIAN ; Hai Ming TAN ; Ning YU ; Tao WANG ; Quan ZHANG
Biomedical and Environmental Sciences 2018;31(4):280-289
OBJECTIVEThe current study aims to investigate the effect of Hemagglutinating virus of Japan envelope (HVJ-E) on induction of apoptosis and autophagy in human prostate cancer PC3 cells, and the underlying mechanisms.
METHODSPC3 cells were treated with HVJ-E at various multiplicity of infection (MOI), and the generated reactive oxygen species (ROS), cell viability, apoptosis, and autophagy were detected, respectively. Next, the role of ROS played in the regulation of HVJ-E-induced apoptosis and autuphagy in PC3 cells were analysed. In the end, the relationship between HVJ-E-induced apoptosis and autuophagy was investigated by using rapamycin and chloroquine.
RESULTSFlow cytometry assay revealed that HVJ-E treatment induced dose-dependent apoptosis and that the JNK and p38 MAPK signaling pathways were involved in HVJ-E-induced apoptosis in PC3 cells. In addition, HVJ-E was able to induce autophagy in PC3 cells via the class III PI3K/beclin-1 pathway. The data also implyed that HVJ-E-triggered autophagy and apoptosis were ROS dependent. When ROS was blocked with N-acetylcysteine (NAC), HVJ-E-induced LC3-II conversion and apoptosis were reversed. Interestingly, HVJ-E-induced apoptosis was significantly increased by an inducer of autophagy, rapamycin pretreatment, both in vitro and in vivo.
CONCLUSIONHVJ-E exerts anticancer effects via autophagic cell death in prostate cancer cells.
Apoptosis ; physiology ; Autophagy ; physiology ; Cell Line, Tumor ; Cell Survival ; Humans ; Male ; Oncolytic Virotherapy ; Prostatic Neoplasms ; metabolism ; Reactive Oxygen Species ; metabolism ; Sendai virus ; immunology ; physiology ; Virus Inactivation
8.Increased Macroautophagy in Interferon-Gamma-Producing T Cells from Patients with Newly Diagnosed Systemic Lupus Erythematosus.
Xiong-Yan LUO ; Jia-Li YUAN ; Jing LIU ; Cai-Nan LUO ; Ming-Hui YANG ; Qin WEI ; Min YANG ; Yong CHEN ; Yi LIU ; Guo-Hua YUAN
Chinese Medical Journal 2018;131(13):1527-1532
BackgroundImbalance of interferon-gamma (IFN-γ), interleukin (IL)-4, and IL-17 producing by T cells is confirmed to contribute to the pathogenesis of systemic lupus erythematosus (SLE). Autophagy is now emerging as a core player in the development and the function of the immune system. Therefore, we investigated the autophagic behavior in IFN-γ-, IL-4-, and IL-17-producing T cells from patients with SLE.
MethodsThirty patients with SLE and 25 healthy controls matched for gender and age were recruited between September 2016 and May 2017. The autophagic levels in IFN-γ T cells, IL-4 T cells, and IL-17 T cells from patients with newly diagnosed SLE and healthy controls were measured using flow cytometry. The plasma levels of IFN-γ were determined by enzyme-linked immunosorbent assay in SLE patients and healthy controls. Unpaired t-tests and the nonparametric Mann-Whitney U-test were used to compare data from patients with SLE and controls. Spearman's rank correlation coefficient was applied for calculation of the correlation between parallel variables in single samples.
ResultsOur results showed increased percentage of autophagy in IFN-γ T cells from patients with SLE and healthy controls ([8.07 ± 2.72]% vs. [3.76 ± 1.67]%, t = 5.184, P < 0.001), but not in IL-4 T cells or IL-17 T cells (P > 0.05) as compared to healthy donors. Moreover, the plasma levels of IFN-γ in SLE patients were significantly higher than those in healthy controls ([68.9 ± 29.1] pg/ml vs. [24.7 ± 17.6] pg/ml, t = 5.430, P < 0.001). Moreover, in SLE patients, the percentage of autophagy in IFN-γ T cells was positively correlated with the plasma levels of IFN-γ (r = 0.344, P = 0.046), as well as the disease activity of patients with SLE (r = 0.379, P = 0.039).
ConclusionThe results indicate that autophagy in IFN-γ T cells from SLE patients is activated, which might contribute to the persistence of T cells producing IFN-γ, such as Th1 cells, and consequently result in the high plasma levels of IFN-γ, and then enhance the disease activity of SLE.
Adult ; Autophagy ; China ; Female ; Humans ; Interferon-gamma ; metabolism ; Interleukin-17 ; metabolism ; Interleukin-4 ; metabolism ; Lupus Erythematosus, Systemic ; immunology ; Male ; Middle Aged ; Th1 Cells ; physiology
9.Role of plant autophagy in stress response.
Shaojie HAN ; Bingjie YU ; Yan WANG ; Yule LIU
Protein & Cell 2011;2(10):784-791
Autophagy is a conserved pathway for the bulk degradation of cytoplasmic components in all eukaryotes. This process plays a critical role in the adaptation of plants to drastic changing environmental stresses such as starvation, oxidative stress, drought, salt, and pathogen invasion. This paper summarizes the current knowledge about the mechanism and roles of plant autophagy in various plant stress responses.
Adaptation, Physiological
;
Arabidopsis
;
genetics
;
physiology
;
Arabidopsis Proteins
;
genetics
;
metabolism
;
Autophagy
;
genetics
;
Disease Resistance
;
Plant Diseases
;
immunology
;
Saccharomyces cerevisiae
;
genetics
;
Sequence Homology
;
Stress, Physiological
10.Insights into battles between Mycobacterium tuberculosis and macrophages.
Guanghua XU ; Jing WANG ; George Fu GAO ; Cui Hua LIU
Protein & Cell 2014;5(10):728-736
As the first line of immune defense for Mycobacterium tuberculosis (Mtb), macrophages also provide a major habitat for Mtb to reside in the host for years. The battles between Mtb and macrophages have been constant since ancient times. Triggered upon Mtb infection, multiple cellular pathways in macrophages are activated to initiate a tailored immune response toward the invading pathogen and regulate the cellular fates of the host as well. Toll-like receptors (TLRs) expressed on macrophages can recognize pathogen-associated-molecular patterns (PAMPs) on Mtb and mediate the production of immune-regulatory cytokines such as tumor necrosis factor (TNF) and type I Interferons (IFNs). In addition, Vitamin D receptor (VDR) and Vitamin D-1-hydroxylase are up-regulated in Mtb-infected macrophages, by which Vitamin D participates in innate immune responses. The signaling pathways that involve TNF, type I IFNs and Vitamin D are inter-connected, which play critical roles in the regulation of necroptosis, apoptosis, and autophagy of the infected macrophages. This review article summarizes current knowledge about the interactions between Mtb and macrophages, focusing on cellular fates of the Mtb-infected macrophages and the regulatory molecules and cellular pathways involved in those processes.
Animals
;
Apoptosis
;
Autophagy
;
Humans
;
Interferon Type I
;
metabolism
;
Macrophages
;
immunology
;
metabolism
;
Mycobacterium tuberculosis
;
physiology
;
Receptors, Calcitriol
;
metabolism
;
Steroid Hydroxylases
;
metabolism
;
Toll-Like Receptors
;
metabolism
;
Tuberculosis
;
immunology
;
metabolism
;
pathology
;
Tumor Necrosis Factors
;
metabolism