1.Role of autophagy in diabetes and endoplasmic reticulum stress of pancreatic beta-cells.
Wenying QUAN ; Yu Mi LIM ; Myung Shik LEE
Experimental & Molecular Medicine 2012;44(2):81-88
Type 2 diabetes mellitus is characterized by insulin resistance and failure of pancreatic beta-cells producing insulin. Autophagy plays a crucial role in cellular homeostasis through degradation and recycling of organelles such as mitochondria or endoplasmic reticulum (ER). Here we discussed the role of beta-cell autophagy in development of diabetes, based on our own studies using mice with beta-cell-specific deletion of Atg7 (autophagy-related 7), an important autophagy gene, and studies by others. beta-cell-specific Atg7-null mice showed reduction in beta-cell mass and pancreatic insulin content. Insulin secretory function ex vivo was also impaired, which might be related to organelle dysfunction associated with autophagy deficiency. As a result, beta-cell-specific Atg7-null mice showed hypoinsulinemia and hyperglycemia. However, diabetes never developed in those mice. Obesity and/or lipid are physiological ER stresses that can precipitate beta-cell dysfunction. Our recent studies showed that beta-cell-specific Atg7-null mice, when bred with ob/ob mice, indeed become diabetic. Thus, autophagy deficiency in beta-cells could be a precipitating factor in the progression from obesity to diabetes due to inappropriate response to obesity-induced ER stress.
Animals
;
Autophagy/genetics/*physiology
;
Diabetes Mellitus/genetics/*metabolism
;
Endoplasmic Reticulum Stress/genetics/*physiology
;
Humans
;
Insulin-Secreting Cells/*metabolism
3.Effect of Notch1 on extracellular matrix deposition in the renal tubulointerstitium of diabetes.
Xing-Mei LIU ; Yan SHEN ; Yu HE ; Xiao-Xia BAN ; Hong-Jun JIN ; Xiao-Lan HE ; He TIAN
Acta Physiologica Sinica 2022;74(3):392-400
The aim of the present study was to observe the effects of Notch1 and autophagy on extracellular matrix deposition in renal tubulointerstitium of diabetes and to explore the mechanism. The mice were randomly divided into normal control group (db/m mice) and diabetes group (db/db mice). After 12 weeks of feeding, the mice were sacrificed and the corresponding biochemical indexes were measured. Rat renal tubular epithelial cells NRK52E were cultured under normal glucose (NG) and high glucose (HG) respectively, and the expression of Notch1 and LC3 proteins were detected by Western blotting. Autophagosomes in NRK52E cells with overexpressed and knockdown Notch1 under NG and HG conditions were observed by confocal microscope, and the expression changes of Notch1, Collagen-I and III protein were detected by immunofluorescence. The results showed that the Notch1 and Collagen-III expressions were increased (P < 0.01) and the LC3 expression was decreased (P < 0.05) in db/db mice compared with db/m mice. In vitro, the Notch1 was increased (P < 0.01) and the LC3 expression was decreased significantly (P < 0.01) in NRK52E cells of HG group compared with NG group. There was no significant change of Notch1 and LC3 expression between the mannitol (MA) group and the NG group. Autophagy was decreased and extracellular matrix deposition was aggravated when Notch1 was overexpressed. In contrast, autophagy was increased and extracellular matrix deposition was relieved by knockdown of Notch1 under HG conditions. In conclusion, Notch1 protein expression was increased and autophagy was reduced in renal tissue of diabetes and renal tubular epithelial cells under HG. The extracellular matrix deposition in the renal tubulointerstitium was relieved by regulating autophagy after the knockdown of Notch1.
Animals
;
Autophagy/physiology*
;
Diabetes Mellitus
;
Extracellular Matrix
;
Glucose/pharmacology*
;
Kidney
;
Mice
;
Rats
;
Receptor, Notch1/genetics*
4.Investigation of the biological roles of autophagy in appressorium morphogenesis in Magnaporthe oryzae.
Journal of Zhejiang University. Science. B 2008;9(10):793-796
Magnaporthe oryzae has been used as a primary model organism for investigating fungus-plant interaction. Many researches focused on molecular mechanisms of appressorium formation to restrain this fungal pathogen. Autophagy is a very high conserved process in eukaryotic cells. Recently, autophagy has been considered as a key process in development and differentiation in M. oryzae. In this report, we present and discuss the current state of our knowledge on gene expression in appressorium formation and the progress in autophagy of rice blast fungi.
Autophagy
;
genetics
;
Gene Expression
;
Genes, Fungal
;
Host-Pathogen Interactions
;
Magnaporthe
;
genetics
;
growth & development
;
pathogenicity
;
physiology
;
Oryza
;
microbiology
;
Plant Diseases
;
microbiology
5.Research progress on mechanism of Nix-mediated mitophagy.
Yanrong ZHENG ; Xiangnan ZHANG ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2017;46(1):92-96
Autophagy is fundamental to maintain cellular homeostasis. As one kind of the most well-studied selective autophagy, autophagy of mitochondria (mitophagy)is crucial for the clearance of damaged mitochondria. Mitophagy dysfunction has been proved to be closely associated with many human diseases. Nix is a key protein for mitophagy during the maturation of reticulocytes. However, the detailed molecular mechanisms underlying Nix-mediated mitophagy are not fully understood. This article summarizes three possible working models of Nix in mitophagy induction. Firstly, Nix can interplay with Parkin, another important protein for mitophagy, to initiate mitophagy. Secondly, Nix can serve as a receptor for autophagy machinery by interacting with Atg8 family through its LIR motif. Finally, as a BH3-only protein, Nix can compete with Beclin-1 to bind other members of Bcl-2 family resulting in increased free Beclin-1 in cytosol, which further promotes autophagy flux.
Autophagy
;
genetics
;
physiology
;
Autophagy-Related Protein 8 Family
;
physiology
;
Beclin-1
;
physiology
;
Membrane Proteins
;
physiology
;
Mitochondria
;
genetics
;
physiology
;
Mitochondrial Degradation
;
genetics
;
physiology
;
Protein Interaction Domains and Motifs
;
Proto-Oncogene Proteins
;
physiology
;
Proto-Oncogene Proteins c-bcl-2
;
antagonists & inhibitors
;
Tumor Suppressor Proteins
;
physiology
;
Ubiquitin-Protein Ligases
;
physiology
6.Role of plant autophagy in stress response.
Shaojie HAN ; Bingjie YU ; Yan WANG ; Yule LIU
Protein & Cell 2011;2(10):784-791
Autophagy is a conserved pathway for the bulk degradation of cytoplasmic components in all eukaryotes. This process plays a critical role in the adaptation of plants to drastic changing environmental stresses such as starvation, oxidative stress, drought, salt, and pathogen invasion. This paper summarizes the current knowledge about the mechanism and roles of plant autophagy in various plant stress responses.
Adaptation, Physiological
;
Arabidopsis
;
genetics
;
physiology
;
Arabidopsis Proteins
;
genetics
;
metabolism
;
Autophagy
;
genetics
;
Disease Resistance
;
Plant Diseases
;
immunology
;
Saccharomyces cerevisiae
;
genetics
;
Sequence Homology
;
Stress, Physiological
7.Impaired autophagy activity-induced abnormal differentiation of bone marrow stem cells is related to adolescent idiopathic scoliosis osteopenia.
Hongqi ZHANG ; Guanteng YANG ; Jiong LI ; Lige XIAO ; Chaofeng GUO ; Yuxiang WANG
Chinese Medical Journal 2023;136(17):2077-2085
BACKGROUND:
Osteopenia has been well documented in adolescent idiopathic scoliosis (AIS). Bone marrow stem cells (BMSCs) are a crucial regulator of bone homeostasis. Our previous study revealed a decreased osteogenic ability of BMSCs in AIS-related osteopenia, but the underlying mechanism of this phenomenon remains unclear.
METHODS:
A total of 22 AIS patients and 18 age-matched controls were recruited for this study. Anthropometry and bone mass were measured in all participants. Bone marrow blood was collected for BMSC isolation and culture. Osteogenic and adipogenic induction were performed to observe the differences in the differentiation of BMSCs between the AIS-related osteopenia group and the control group. Furthermore, a total RNA was extracted from isolated BMSCs to perform RNA sequencing and subsequent analysis.
RESULTS:
A lower osteogenic capacity and increased adipogenic capacity of BMSCs in AIS-related osteopenia were revealed. Differences in mRNA expression levels between the AIS-related osteopenia group and the control group were identified, including differences in the expression of LRRC17 , DCLK1 , PCDH7 , TSPAN5 , NHSL2 , and CPT1B . Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed several biological processes involved in the regulation of autophagy and mitophagy. The Western blotting results of autophagy markers in BMSCs suggested impaired autophagic activity in BMSCs in the AIS-related osteopenia group.
CONCLUSION
Our study revealed that BMSCs from AIS-related osteopenia patients have lower autophagic activity, which may be related to the lower osteogenic capacity and higher adipogenic capacity of BMSCs and consequently lead to the lower bone mass in AIS patients.
Humans
;
Adolescent
;
Scoliosis/genetics*
;
Cell Differentiation/physiology*
;
Osteogenesis/genetics*
;
Bone Diseases, Metabolic/genetics*
;
Kyphosis
;
Autophagy/genetics*
;
Bone Marrow Cells
;
Cells, Cultured
;
Doublecortin-Like Kinases
8.Influence of HMGB1/MAPK/m-TOR signaling pathway on cell autophagy and chemotherapy resistance in K562 cells.
Liying LIU ; Fei GAO ; Yanqiong YE ; Zhiheng CHEN ; Yunpeng DAI ; Ping ZHAO ; Guotao GUAN ; Mingyi ZHAO
Journal of Central South University(Medical Sciences) 2016;41(10):1016-1023
To observe the effect of high-mobility group box 1 (HMGB1) on autophagy and chemotherapy resistance in human leukemiacell line (K562) cells, and to explore the underlying mechanisms.
Methods: The K562 cells were cultured in vitro and divided into 6 groups: a chemotherapeutic group, a chemotherapeutic control group, a HMGB1 preconditioning group, a HMGB1 preconditioning control group, a HMGB1 siRNA group and a siRNA control group. The chemotherapeutic group was further divided into a vincristine (VCR) group, an etoposide (VP-16) group, a cytosine arabinoside (Ara-C) group, a adriamycin (ADM) group and a arsenic trioxide (As2O3) group. The cell activity was evaluated by cell counting kit-8. The protein levels of HMGB1, microtubule-associate protein1light chain3 (LC3), AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (m-TOR) were determined by Western blotting. The level of serum HMGB1 was evaluated by enzyme-linked immunosorbent assay (ELISA). The autophagy was examined by monodansylcadaverine staining and observed under transmission electron microscopy.
Results: Compared with the control group, the cell activity was significantly decreased and the level of serum HMGB1 was significantly increased in the chemotherapeutic (VCR, VP-16, Ara-C, ADM and As2O3) groups (all P<0.05). Compared with the control group, the cell activity and the level of serum HMGB1 were significantly increased in the HMGB1 preconditioning group (both P<0.05). Compared with the siRNA control group, the cell activity and the level of serum HMGB1 were significantly decreased in the HMGB1 siRNA group (both P<0.05). Compared with the control group, the expression of LC3-II and the formation of autophagic bodies were increased in the HMGB1 preconditioning group (both P<0.05), the p-AMPK expression was increased and p-mTOR expression was decreased (both P<0.05).
Conclusion: HMGB1 can increase the autophagy and promote chemotherapy resistance through the pathway of AMPK/m-TOR in K562 cells.
AMP-Activated Protein Kinases
;
genetics
;
physiology
;
Arsenic Trioxide
;
Arsenicals
;
Autophagy
;
genetics
;
Cytarabine
;
Doxorubicin
;
Drug Resistance, Neoplasm
;
genetics
;
physiology
;
Etoposide
;
HMGB1 Protein
;
genetics
;
physiology
;
Humans
;
K562 Cells
;
physiology
;
Microtubule-Associated Proteins
;
Oxides
;
RNA, Small Interfering
;
Signal Transduction
;
TOR Serine-Threonine Kinases
;
genetics
;
physiology
;
Vincristine
9.Inhibition of Beclin 1 enhances apoptosis by H2O2 in glioma U251 cells.
Xiao-Xia KONG ; Hong-Yu ZHANG ; Zhao-Qin CHEN ; Xiao-Fang FAN ; Yong-Sheng GONG
Acta Physiologica Sinica 2011;63(3):238-244
Oxidative stress could induce apoptosis and autophagy process simultaneously, but the role of autophagy is still not clear. Beclin 1, a key gene regulating the preautophagosome formation, is involved in the injury induced by oxidative stress. To observe the role of autophagy in H2O2-induced injury of U251 cells, the recombinant plasmid Psilencer3.1-siRNA-Beclin 1 was transfected into U251 cells by eukaryotic cell transfection technique. Plasmid vector and cell culture medium were used as negative and control groups respectively. The cells were collected 24 h later, and the cell total protein was extracted to detect Beclin 1, Bcl-2 and Bax protein expressions by Western blot. After the Beclin 1-siRNA cells were treated with 1 mmol/L H2O2, the autophagic vacuoles in the cells were stained with monodansylcadaverine (MDC), and the cell apoptotic ratio was determined with PI/Annexin V-FITC staining by flow cytometry analysis. The results showed that the synthetic siRNA decreased the expression of Beclin 1 protein significantly, but had no obvious effect on the levels of Bcl-2 and Bax protein expressions. Compared with those in the control group, the autophagic vacuoles, the level of LC3-II protein expression and the percentage of apoptotic cells increased (P < 0.05) in 1 mmol/L H2O2 group. In Beclin 1-siRNA + H2O2 group, autophagic vacuoles and the levels of LC3-II protein expression decreased obviously, the percentage of apoptotic cells increased significantly compared with that in 1 mmol/L H2O2 group (P < 0.05). H2O2 and autophagy inhibitor 3-methyladenine (3-MA) combination also increased the percentage of apoptotic cells obviously (P < 0.05). These results revealed that the transfection of Psilencer3.1-siRNA-Beclin 1 effectively inhibited the expression of Beclin 1 protein expression, degraded the autophagy level and increased the apoptotic rate in U251 cells under oxidative stress, which was coincident with the effect of autophagy inhibitor 3-MA. This study suggests that autophagy is a cell protective role in oxidative stress process, and the inhibition of autophagy may enhance apoptosis.
Apoptosis
;
drug effects
;
Apoptosis Regulatory Proteins
;
genetics
;
metabolism
;
Autophagy
;
physiology
;
Beclin-1
;
Brain Neoplasms
;
pathology
;
Cell Line, Tumor
;
Glioma
;
pathology
;
Humans
;
Hydrogen Peroxide
;
pharmacology
;
Membrane Proteins
;
genetics
;
metabolism
;
Oxidative Stress
;
RNA, Small Interfering
;
genetics
;
Transfection
10.Molecular mechanism of rhein on inhibiting autophagic protein expression in renal tubular epithelial cells via regulating mTOR signaling pathway activation.
Yue TU ; Wei SUN ; Liu-bao GU ; Yi-Gang WAN ; Hao HU ; Hong LIU
China Journal of Chinese Materia Medica 2014;39(21):4090-4095
OBJECTIVETo explore the effects and molecular mechanisms of rhein on reducing starvation-induced autophagic protein expression in renal tubular epithelial ( NRK-52E) cells.
METHODHank's balanced salt solution (HBSS) was used to induce NRK-52E cells to be in the state of starvation. After the intervention of HBSS for 0, 0.5,1, 2 and 6 hours, firstly, the protein expression of microtubule-associated protein 1 light chain 3(LC3 I/II), which is a key protein in autophagy, was detected. Secondly, the protein expressions of mammalian target of rapamycin (mTOR) and phosphorylated-mTOR Ser2448 (p-mTOR S2448) were examined. And then, after the co-treatment of rhein (5 mg x L(-1)) and HBSS (1 mL) without or with mTOR inhibitor, rapamycin (100 nmol x L(-1)), the protein expressions of LC3 I/II, mTOR and p-mTOR S2448 were tested, respectively.
RESULTHBSS could induce the up-regulation of LC3 II and the down-regulation of p-mTOR S2448 at protein expression level in NRK-52E cells. The co-treatment of rhein and HBSS could reversely regulate the protein expressions of LC3 II and p-mTOR S2448 in NRK-52E cells significantly. The co-treatment of rapamycin, rhein and HBSS could recover the level of LC3 II protein expression in HBSS-intervened NRK-52E cells.
CONCLUSIONHBSS induces autophagy in renal tubular epithelial cells by inhibiting mTOR signaling pathway activation. Rhein reduces the autophagic protein expression in renal tubular epithelial cells through regulating mTOR signaling pathway activation, which is the possible effects and molecular mechanisms.
Animals ; Anthraquinones ; pharmacology ; Autophagy ; drug effects ; Cells, Cultured ; Epithelial Cells ; drug effects ; metabolism ; Isotonic Solutions ; pharmacology ; Kidney Tubules ; drug effects ; metabolism ; Microtubule-Associated Proteins ; genetics ; Rats ; Signal Transduction ; drug effects ; TOR Serine-Threonine Kinases ; antagonists & inhibitors ; genetics ; physiology