1.Inflammatory state and autism-like behavioral phenotype of offspring induced by maternal exposure to low-dose chemical mixtures during pregnancy in mice.
Linyang SONG ; Wenzhi WEN ; Jing LIU ; Xiaobao JIN ; Junhua YANG
Journal of Zhejiang University. Medical sciences 2021;50(3):279-289
To investigate the effects of maternal exposure to 13 chemicals mixture (CM) during pregnancy on pregnancy outcome and health status of maternal/offspring mice. C57BL/6 pregnant mice were given drinking water containing carbaryl dimethoate glyphosate methomyl methyl parathion triadimefon aspartame sodium benzoate calcium disodium ethylene diamine tetra-acetate ethylparaben butylparaben bisphenol A and acacia gum The effects of CM exposure on pregnancy outcome, health status of dams/offspring, levels of circulating inflammatory cytokines in dams/offspring and emotional related behaviors of offspring were evaluated. CM exposure during pregnancy had no significant effect on pregnancy outcome, liver function, body weight of the dams in late pregnancy and uterine/ovarian weight after delivery, however, it led to an increase in maternal serum IFN-γ level (<0.05). CM exposure during pregnancy had no significant effect on the liver function of offspring, but increased the serum IFN-γ, prefrontal cortex IFN-γ, and TNF-α and hippocampus IFN-γ levels in the offspring(all <0.01). In addition, the offspring of CM group showed significant abnormal emotion-related (autism-like) behaviors in adulthood, especially in male offspring. Low dose CM exposure during pregnancy may induce inflammation status in dams/offspring, and lead to autism-like behaviors in offspring, indicating the potential effects of low dose CM exposure on human maternal and infant health.
Adult
;
Animals
;
Autistic Disorder/chemically induced*
;
Female
;
Humans
;
Male
;
Maternal Exposure/adverse effects*
;
Mice
;
Mice, Inbred C57BL
;
Phenotype
;
Pregnancy
;
Prenatal Exposure Delayed Effects/chemically induced*
2.Mechanism of valproic acid-induced dendritic spine and synaptic impairment in the prefrontal cortex for causing core autistic symptoms in mice.
Fei Fei WANG ; Lu Yi WANG ; Yue XIONG ; Jing DENG ; Ming Qi LYU ; Bo Yi TANG ; Xiao Yue ZHANG ; Ying Bo LI
Journal of Southern Medical University 2022;42(1):101-107
OBJECTIVE:
To investigate the mechanism of valproic acid (VPA) -induced impairment of the dendritic spines and synapses in the prefrontal cortex (PFC) for causing core symptoms of autism spectrum disorder (ASD) in mice.
METHODS:
Female C57 mice were subjected to injections of saline or VPA on gestational days 10 and 12, and the male offspring mice in the two groups were used as the normal control group and ASD model group (n=10), respectively. Another 20 male mice with fetal exposure to VPA were randomized into two groups for stereotactic injection of DMSO or Wortmannin into the PFC (n=10). Open field test, juvenile play test and 3-chamber test were used to evaluate autistic behaviors of the mice. The density of dendrite spines in the PFC was observed with Golgi staining. Western blotting and immunofluorescence staining were used to detect the expressions of p-PI3K, PI3K, p-AKT, AKT, p-mTOR, mTOR and the synaptic proteins PSD95, p-Syn, and Syn in the PFC of the mice.
RESULTS:
Compared with the normal control mice, the mice with fetal exposure to VPA exhibited obvious autism-like behaviors with significantly decreased density of total, mushroom and stubby dendritic spines (P < 0.05) and increased filopodia dendritic spines (P < 0.05) in the PFC. The VPA-exposed mice also showed significantly increased expressions of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR (P < 0.01) and lowered expressions of PSD95 and p-Syn/Syn in the PFC (P < 0.05 or 0.001). Wortmannin injection into the PFC obviously improved the ASD-like phenotype and dendritic spine development, down-regulated PI3K/Akt/mTOR signaling pathway and up-regulated the synaptic proteins in VPA-exposed mice.
CONCLUSION
In male mice with fetal exposure to VPA, excessive activation of PI3K/Akt/mTOR signaling pathway and decreased expressions of the synaptic proteins PSD95 and p-Syn cause dendritic spine damage and synaptic development disturbance in the PFC, which eventually leads to ASD-like phenotype.
Animals
;
Autism Spectrum Disorder/chemically induced*
;
Autistic Disorder/chemically induced*
;
Dendritic Spines
;
Disease Models, Animal
;
Female
;
Male
;
Mice
;
Phosphatidylinositol 3-Kinases
;
Prefrontal Cortex
;
Prenatal Exposure Delayed Effects
;
Valproic Acid/adverse effects*