1.Neural Integration of Audiovisual Sensory Inputs in Macaque Amygdala and Adjacent Regions.
Liang SHAN ; Liu YUAN ; Bo ZHANG ; Jian MA ; Xiao XU ; Fei GU ; Yi JIANG ; Ji DAI
Neuroscience Bulletin 2023;39(12):1749-1761
Integrating multisensory inputs to generate accurate perception and guide behavior is among the most critical functions of the brain. Subcortical regions such as the amygdala are involved in sensory processing including vision and audition, yet their roles in multisensory integration remain unclear. In this study, we systematically investigated the function of neurons in the amygdala and adjacent regions in integrating audiovisual sensory inputs using a semi-chronic multi-electrode array and multiple combinations of audiovisual stimuli. From a sample of 332 neurons, we showed the diverse response patterns to audiovisual stimuli and the neural characteristics of bimodal over unimodal modulation, which could be classified into four types with differentiated regional origins. Using the hierarchical clustering method, neurons were further clustered into five groups and associated with different integrating functions and sub-regions. Finally, regions distinguishing congruent and incongruent bimodal sensory inputs were identified. Overall, visual processing dominates audiovisual integration in the amygdala and adjacent regions. Our findings shed new light on the neural mechanisms of multisensory integration in the primate brain.
Animals
;
Macaca
;
Acoustic Stimulation
;
Auditory Perception/physiology*
;
Visual Perception/physiology*
;
Amygdala/physiology*
;
Photic Stimulation
2.Corticostriatal Neurons in the Anterior Auditory Field Regulate Frequency Discrimination Behavior.
Zhao-Qun WANG ; Hui-Zhong WEN ; Tian-Tian LUO ; Peng-Hui CHEN ; Yan-Dong ZHAO ; Guang-Yan WU ; Ying XIONG
Neuroscience Bulletin 2023;39(6):962-972
The anterior auditory field (AAF) is a core region of the auditory cortex and plays a vital role in discrimination tasks. However, the role of the AAF corticostriatal neurons in frequency discrimination remains unclear. Here, we used c-Fos staining, fiber photometry recording, and pharmacogenetic manipulation to investigate the function of the AAF corticostriatal neurons in a frequency discrimination task. c-Fos staining and fiber photometry recording revealed that the activity of AAF pyramidal neurons was significantly elevated during the frequency discrimination task. Pharmacogenetic inhibition of AAF pyramidal neurons significantly impaired frequency discrimination. In addition, histological results revealed that AAF pyramidal neurons send strong projections to the striatum. Moreover, pharmacogenetic suppression of the striatal projections from pyramidal neurons in the AAF significantly disrupted the frequency discrimination. Collectively, our findings show that AAF pyramidal neurons, particularly the AAF-striatum projections, play a crucial role in frequency discrimination behavior.
Acoustic Stimulation/methods*
;
Neurons/physiology*
;
Auditory Cortex/physiology*
;
Auditory Perception
;
Pyramidal Cells
3.The function of auditory cortex in the elderly using functional near-infrared spectroscopy technology.
Liu YANG ; You Nuo CHEN ; Song Jian WANG ; Yuan WANG ; Ting CHEN ; Ying LIANG ; Shuo WANG
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2022;57(4):458-466
Objective: Functional near-infrared spectroscopy (fNIRS) was used to study the effect of aging on the neuroimaging characteristics of cerebral cortex in the process of speech perception. Method: Thirty-four adults with normal hearing were recruited from March 2021 to June 2021, including 17 in the young group, with 6 males, 11 females, age (32.1±5.0) years, age range 20-39 years. and 17 in the elderly group, with 6 males, 11 females, age (63.2±2.8) years, age range 60-70 years. The test material was the sentence table of the Mandarin Hearing Test in Noise (MHINT). The task state block experiment design was adopted, and the temporal lobe, Broca's area, Wernicke's area, motor cortex were used as regions of interest. Objective brain imaging technology (fNIRS) combined with subjective psychophysical testing method was used to analyze the activation area and degree of cerebral cortex related to auditory speech perception in the elderly and young people under different listening conditions (quiet, signal-to-noise ratio of 10 dB, 5 dB, 0 dB, -5 dB). SPSS 23 software was used for statistical analysis. Result: The activation area and degree of activation in the elderly group were lower than those in the young group under each task condition; The number of activation channels in the young group were significantly more than those in the old group, and the number of activation channels in the left hemisphere were more than those in the right hemisphere, but there was no difference in the number of activation channels. There were more channels affected by age in the left hemisphere than in the right hemisphere. The activation degree of the young group when the signal-to-noise ratio was 0 dB was significantly higher than that of other signal-to-noise ratio conditions (P<0.05), but there was no significant difference in the old group under the five conditions (P>0.05). The speech recognition score of the young group was higher than that of the old group under all conditions. When the quiet and signal-to-noise ratio was 10 dB, the correct score of the two groups was equal or close to 100%. With the gradual decrease of signal-to-noise ratio, there was a significant difference between the two groups when the signal-to-noise ratio was 5 dB. The speech recognition accuracy of the young group decreased significantly when the signal-to-noise ratio was 0 dB, while that of the old group decreased significantly when the signal-to-noise ratio was 5 dB. Conclusions: With the increase of age, the speech perception in noisy environment and the activity of cerebral cortex gradually deteriorate, and the speech dominance hemisphere (left hemisphere) will be significantly affected by aging. The overall activation area and activation degree of the elderly under different speech tasks are lower than those of the young.
Acoustic Stimulation/methods*
;
Adolescent
;
Adult
;
Aged
;
Auditory Cortex/physiology*
;
Female
;
Humans
;
Male
;
Middle Aged
;
Spectroscopy, Near-Infrared
;
Speech Perception/physiology*
;
Technology
;
Young Adult
4.Cross-Modal Interaction and Integration Through Stimulus-Specific Adaptation in the Thalamic Reticular Nucleus of Rats.
Yumei GONG ; Yuying ZHAI ; Xinyu DU ; Peirun SONG ; Haoxuan XU ; Qichen ZHANG ; Xiongjie YU
Neuroscience Bulletin 2022;38(7):785-795
Stimulus-specific adaptation (SSA), defined as a decrease in responses to a common stimulus that only partially generalizes to other rare stimuli, is a widespread phenomenon in the brain that is believed to be related to novelty detection. Although cross-modal sensory processing is also a widespread phenomenon, the interaction between the two phenomena is not well understood. In this study, the thalamic reticular nucleus (TRN), which is regarded as a hub of the attentional system that contains multi-modal neurons, was investigated. The results showed that SSA existed in an interactive oddball stimulation, which mimics stimulation changes from one modality to another. In the bimodal integration, SSA to bimodal stimulation was stronger than to visual stimulation alone but similar to auditory stimulation alone, which indicated a limited integrative effect. Collectively, the present results provide evidence for independent cross-modal processing in bimodal TRN neurons.
Acoustic Stimulation
;
Animals
;
Auditory Perception/physiology*
;
Geniculate Bodies
;
Rats
;
Rats, Wistar
;
Thalamic Nuclei/physiology*
5.Asymmetric response mechanism of auditory event related potentials.
Xiao-Fei LAI ; Zheng YAN ; Li-Cheng SHAO ; Fang DUAN
Acta Physiologica Sinica 2022;74(4):563-573
The classical auditory oddball paradigm is a commonly used experimental paradigm for evoking event related potentials (ERPs). The present study was aimed to explore the auditory cognitive processing mechanism of space perception of human brain. We employed an auditory oddball paradigm of binaural unbiased and biased sound intensity to compare and analyze the response characteristics of ERP. By focusing on the spatial lateralization characteristics of P300 and mismatch negativity (MMN) components, we analyzed their lateralization trends according to the laterality index. We found that both P300 and MMN components showed right-hemisphere lateralization phenomenon under the stimulation of asymmetric intensity of auditory acoustic. The results suggested that the right hemisphere of human brain played a key role in spatial information processing. The results also indicated that the hemispherical characteristics of the brain were not related to the actual spatial direction of the auditory stimulus, but were determined by the hemispherical functions of the brain. Furthermore, the results suggested that the MMN components induced by spatial differences were stronger in females than those in males.
Acoustic Stimulation
;
Auditory Perception/physiology*
;
Brain Mapping
;
Electroencephalography
;
Evoked Potentials
;
Evoked Potentials, Auditory/physiology*
;
Female
;
Humans
;
Male
6.Developmental Exposure to Bisphenol a Degrades Auditory Cortical Processing in Rats.
Binliang TANG ; Kailin LI ; Yuan CHENG ; Guimin ZHANG ; Pengying AN ; Yutian SUN ; Yue FANG ; Hui LIU ; Yang SHEN ; Yifan ZHANG ; Ye SHAN ; Étienne DE VILLERS-SIDANI ; Xiaoming ZHOU
Neuroscience Bulletin 2022;38(11):1292-1302
Developmental exposure to bisphenol A (BPA), an endocrine-disrupting contaminant, impairs cognitive function in both animals and humans. However, whether BPA affects the development of primary sensory systems, which are the first to mature in the cortex, remains largely unclear. Using the rat as a model, we aimed to record the physiological and structural changes in the primary auditory cortex (A1) following lactational BPA exposure and their possible effects on behavioral outcomes. We found that BPA-exposed rats showed significant behavioral impairments when performing a sound temporal rate discrimination test. A significant alteration in spectral and temporal processing was also recorded in their A1, manifested as degraded frequency selectivity and diminished stimulus rate-following by neurons. These post-exposure effects were accompanied by changes in the density and maturity of dendritic spines in A1. Our findings demonstrated developmental impacts of BPA on auditory cortical processing and auditory-related discrimination, particularly in the temporal domain. Thus, the health implications for humans associated with early exposure to endocrine disruptors such as BPA merit more careful examination.
Humans
;
Rats
;
Animals
;
Benzhydryl Compounds/toxicity*
;
Phenols/toxicity*
;
Auditory Perception/physiology*
;
Neurons/physiology*
7.The functional role of temporal structure in human perception: behavioral evidence and neural correlates.
Rui-Chen HU ; Pei-Jun YUAN ; Yi JIANG ; Ying WANG
Acta Physiologica Sinica 2019;71(1):105-116
To extract the temporal structure of sensory inputs is of great significance to our adaptive functioning in the dynamic environment. Here we characterize three types of temporal structure information, and review behavioral and neural evidence bearing on the encoding and utilization of such information in visual and auditory perception. The evidence together supports a functional view that the brain not only tracks but also makes use of temporal structure from diverse sources for a broad range of cognitive processes, such as perception, attention, and unconscious information processing. These functions are implemented by brain mechanisms including neural entrainment, predictive coding, as well as more specific mechanisms that vary with the type of temporal regularity and sensory modality. This framework enriches our understanding of how the human brain promotes dynamic information processing by exploiting regularities in ubiquitous temporal structures.
Attention
;
Auditory Perception
;
Brain
;
physiology
;
Humans
;
Time Perception
;
Visual Perception
8.Spatial Properties of Mismatch Negativity in Patients with Disorders of Consciousness.
Xiaoyu WANG ; Rao FU ; Xiaoyu XIA ; Xueling CHEN ; Han WU ; Nicole LANDI ; Ken PUGH ; Jianghong HE ; Fengyu CONG
Neuroscience Bulletin 2018;34(4):700-708
In recent decades, event-related potentials have been used for the clinical electrophysiological assessment of patients with disorders of consciousness (DOCs). In this paper, an oddball paradigm with two types of frequency-deviant stimulus (standard stimuli were pure tones of 1000 Hz; small deviant stimuli were pure tones of 1050 Hz; large deviant stimuli were pure tones of 1200 Hz) was applied to elicit mismatch negativity (MMN) in 30 patients with DOCs diagnosed using the JFK Coma Recovery Scale-Revised (CRS-R). The results showed that the peak amplitudes of MMN elicited by both large and small deviant stimuli were significantly different from baseline. In terms of the spatial properties of MMN, a significant interaction effect between conditions (small and large deviant stimuli) and electrode nodes was centered at the frontocentral area. Furthermore, correlation coefficients were calculated between MMN amplitudes and CRS-R scores for each electrode among all participants to generate topographic maps. Meanwhile, a significant negative correlation between the MMN amplitudes elicited by large deviant stimuli and the CRS-R scores was also found at the frontocentral area. In consequence, our results combine the above spatial properties of MMN in patients with DOCs, and provide a more precise location (frontocentral area) at which to evaluate the correlation between clinical electrophysiological assessment and the level of consciousness.
Acoustic Stimulation
;
Adolescent
;
Adult
;
Aged
;
Auditory Perception
;
physiology
;
Brain Injuries
;
complications
;
physiopathology
;
Consciousness Disorders
;
etiology
;
physiopathology
;
Electroencephalography
;
Evoked Potentials
;
Female
;
Humans
;
Male
;
Middle Aged
;
Neuropsychological Tests
;
Severity of Illness Index
;
Wavelet Analysis
9.Performance-intensity function of short Mandarin monosyllabic word list for normal-hearing listeners.
Rui ZHOU ; Hua ZHANG ; Shuo WANG ; Jing CHEN ; Dan WU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2014;28(6):396-399
OBJECTIVE:
To analyze the short monosyllabic list of Mandarin speech test materials (MSTMs) which have been evaluated the equivalence of difficulty, and to establish the performance-intensity function (P-I function) for people with normal hearing as clinical reference of hearing recovery and individuals ability to perceive and process speech.
METHOD:
Thirty-seven subjects (the age ranged from 18 to 26 years old) who speak Mandarin well in their daily lives with normal hearing participated in this study. Eight lists of the Short Mandarin Monosyllabic materials (20 words per list) with equal difficulty were utilized. The results were analyzed by Statistical Package for the Social Sciences (SPSS) software version 17.0.
RESULT:
P-I function for short monosyllabic word list was x = 98.557/(1 + 12.243 exp (-0.17(P-15, x(max) = 98.557. And the sound pressure level of speech corresponding to a 50% recognition score was 29.6 dB SPL or 9.6 dB HL. The results showed P-I function of 3.1 per dB for Mandarin materials.
CONCLUSION
The study established the P-I function of the Mandarin short monosyllabic word list materials with equal difficulty, which provides the normative data for identifying the normal hearing in a clinical setting.
Adult
;
Auditory Perception
;
Female
;
Hearing Tests
;
methods
;
Humans
;
Male
;
Speech
;
Speech Perception
;
physiology
10.40 Hz auditory steady state response to linguistic features of stimuli during auditory hallucinations.
Jun YING ; Zheng YAN ; Xiao-Rong GAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(5):748-753
The auditory steady state response (ASSR) may reflect activity from different regions of the brain, depending on the modulation frequency used. In general, responses induced by low rates (≤40 Hz) emanate mostly from central structures of the brain, and responses from high rates (≥80 Hz) emanate mostly from the peripheral auditory nerve or brainstem structures. Besides, it was reported that the gamma band ASSR (30-90 Hz) played an important role in working memory, speech understanding and recognition. This paper investigated the 40 Hz ASSR evoked by modulated speech and reversed speech. The speech was Chinese phrase voice, and the noise-like reversed speech was obtained by temporally reversing the speech. Both auditory stimuli were modulated with a frequency of 40 Hz. Ten healthy subjects and 5 patients with hallucination symptom participated in the experiment. Results showed reduction in left auditory cortex response when healthy subjects listened to the reversed speech compared with the speech. In contrast, when the patients who experienced auditory hallucinations listened to the reversed speech, the auditory cortex of left hemispheric responded more actively. The ASSR results were consistent with the behavior results of patients. Therefore, the gamma band ASSR is expected to be helpful for rapid and objective diagnosis of hallucination in clinic.
Acoustic Stimulation
;
methods
;
Adult
;
Algorithms
;
Auditory Cortex
;
physiopathology
;
Auditory Perception
;
physiology
;
Electroencephalography
;
methods
;
Female
;
Hallucinations
;
diagnosis
;
physiopathology
;
Humans
;
Linguistics
;
Male
;
Middle Aged
;
Models, Neurological
;
Speech
;
Young Adult

Result Analysis
Print
Save
E-mail