1.Effect of lead-exposed astrocytes on neuronal synaptic formation.
Yan CUI ; Tingting LI ; Haiyang YU ; Yingjun LIAO ; Yaping JIN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2014;32(9):641-647
OBJECTIVETo investigate the effect of lead-exposed astrocyte conditioned medium (ACM) on the synaptic formation of neurons and to provide reference for the mechanism of lead neurotoxicity.
METHODSAstrocytes were cultured in the medium containing 50, 100, 200, 400, and 800 µmol/L lead acetate for 72 h. Alamar Blue was used to assess the cell viability of astrocytes, and then ACM was collected. Primarily cultured neurons were divided into six groups: pure culture group, non-glutamic acid (Glu)-induced ACM treatment group, Glu-induced lead-free ACM treatment group, and Glu-induced 50, 100, and 200 µmol/L lead acetate-exposed ACM treatment groups. Neurons were collected after being cultured in ACM for 24, 48, or 72 h. The content of synaptophysin (SYP) in neurons was determined by Western blot. The SYP expression in neurons was measured by immunofluorescence after being cultured in ACMfor 72 h.
RESULTSIn all lead-exposed groups, the cell viability of astrocytes declined with increasing concentration of lead (P < 0.05). The Western blot showed that compared with the pure culture group, the non-Glu-induced ACM treatment group and Glu-induced lead- free ACM treatment group had significantly increased content of SYP in neurons (P < 0.01); compared with the non-Glu-induced ACM treatment group, the Glu-induced ACM treatment groups had significantly reduced SYP expression in neurons (P < 0.05); compared with the Glu-induced lead-free ACM treatment group, all lead-exposed ACM treatment groups had the content of SYP in neurons significantly reduced with increasing concentration of lead after 72-h culture (P < 0.01), the 200 µmol/L lead-exposed ACM treatment group had significantly reduced content of SYP in neurons after 48-h culture (P < 0.01), and all lead-exposed ACM treatment groups showed no significant changes in the content of SYP in neurons after 24-h culture. Double-labeling immunofluorescence of SYP showed that all lead-exposed ACM treatment groups had a significant decrease in the number of SYP-fluorescent particles after 72-h culture (P < 0.05).
CONCLUSIONAstrocytes promote synaptic formation of neurons, which may be inhibited during lead exposure.
Astrocytes ; drug effects ; physiology ; Cell Survival ; drug effects ; Cells, Cultured ; Culture Media, Conditioned ; metabolism ; Glutamic Acid ; metabolism ; Lead ; toxicity ; Neurons ; drug effects ; Synapses ; drug effects ; physiology
2.Human Papilloma Virus Type 16 E7 Genes Protect Astrocytes against Apoptotic and Necrotic Death Induced by Hydrogen Peroxide .
Won Tack LEE ; Jong Eun LEE ; Sung Ho LEE ; Hyun Sook JANG ; Rona G GIFFARD ; Kyung Ah PARK
Yonsei Medical Journal 2001;42(5):471-479
Hydrogen peroxide is considered to be a dose- and time-dependent mediator in apoptotic and necrotic death. In this study, we examined the signaling of the E6 and E7 proteins with respect to apoptosis or necrosis after H2O2 injury using an in vitro model with overexpressed E6 or E7 genes. For this purpose, the E6 and E7 gene expressing astrocytes were exposed to 0.01 mM and 0.2 mM H2 O2 solutions. Twenty- four hours after treatment with the lower dosage(0.01 mM H2O2), control, E6-expressing cells suffered about 45% injury and LXSN-expressi ng cells decreased by 67% as assessed by LDH release. However, E7-expressing cells showed less injury, resulting in 20-30% of LDH release. Astrocytes expressing E6, E7, LXSN and mock-infected cells showed a typical apoptotic death patter n on the DNA gel after treatment with a low-dose of H2O2 (0.01 mM), however the y died from necrotic death after a high-dose (0.2 mM) H2O2. Overexpression of HPV-E7 genes protected the cells from apoptotic death after a low-dose of H2O2 and from necrotic death after a high-dose of H2O2, while the overexpression of E 6 genes from the necrotic death. E7 expressing astrocytes showed higher catalas e activity and the levels of E2F protein surged more than 100-folds compared with the control astrocytes. We believe that the activity of E7 protein to protect astrocytes from H2O2 injury was at least partly due to increased catalase, a scavenger protein.
Animal
;
Apoptosis/*physiology
;
Astrocytes/*drug effects/pathology/*physiology
;
Cells, Cultured
;
Hydrogen Peroxide/*pharmacology
;
Mice
;
Necrosis
;
Oncogene Proteins, Viral/*genetics/*physiology
;
Oxidants/*pharmacology
;
Signal Transduction/physiology
3.Experimental study on the apoptosis of the astrocytes and the oligodendrocytes induced by Ca(2+) reperfusion.
Haihan MA ; Yang SHAO ; Yamin WU ; Hongyun LI ; Weihong LIAO ; Yuan LIU ; Hengwen YANG ; Lin ZENG ; Zaiyun LONG
Chinese Journal of Traumatology 2002;5(1):32-35
OBJECTIVETo investigate the apoptosis rules of the astrocytes and oligodendrocytes induced by Ca(2+) reperfusion.
METHODSThe apoptosis of purified cultured astrocytes and oligodendrocytes induced by Ca(2+) reperfusion and the relationship between the development of the cell apoptosis and post-reperfusion time was observed.
RESULTSBoth the astrocytes and oligodendrocytes were obviously in a time-dependent fashion, and the apoptosis ratios of the oligodendrocytes (39.73%+/-4.16%) were higher than the astrocytes (19.64%+/-4.67%) 24 hours after Ca(2+) reperfusion. The TUNEL positive cells were 13.6+/-1.82 and 21.4+/-1.95 at every visual field of astrocytes and oligodendrocytes respectively 24 hours after Ca(2+) reperfusion.
CONCLUSIONSThe astrocytes and oligodendrocytes are similar wi th the development rules on apoptosis and have different susceptiveness to the situation.
Animals ; Apoptosis ; drug effects ; physiology ; Astrocytes ; cytology ; pathology ; physiology ; Calcium ; physiology ; Cells, Cultured ; Flow Cytometry ; In Situ Nick-End Labeling ; Oligodendroglia ; cytology ; pathology ; physiology ; Rats ; Rats, Wistar
4.Astrocytes protect MN9D neuronal cells against rotenone-induced oxidative stress by a glutathione-dependent mechanism.
Qian CAO ; Ling-Rong WEI ; Ling-Ling LU ; Chun-Li ZHAO ; Huan-Ying ZHAO ; Hui YANG
Acta Physiologica Sinica 2007;59(3):253-259
Astrocytes maintain homeostasis of neuronal microenvironment, provide metabolic and trophic support to neurons and modulate neuronal responses to injury. Rotenone specifically inhibits mitochondrial complex I, and long exposure to rotenone may increase the risk for Parkinson's disease (PD) and cause Parkinsonism. However, little is known about the role of astrocytes in the process of rotenone-induced dopaminergic neuron injury. In order to investigate this issue, we used MN9D cells as a cell model of dopaminergic neurons and rotenone as a toxin to initiate mitochondrial deficiency. MN9D cells treated with the normal medium or astrocyte-conditioned medium (ACM) were exposed to different concentrations of rotenone for different time followed by cell viability measurement by MTT assay. Besides, various concentrations of ACM and temporally different treatments were devised to evaluate protective efficiency of ACM. Growth curve of cells in the normal medium or ACM was continuously assessed by cell counting for 8 d. The influence of rotenone and ACM on cellular oxidative stress was determined by DCFH-DA staining followed by flow cytometric analysis. Glutathione (GSH) content after treatment of ACM or rotenone was measured by GSH assay kit. Our results showed that rotenone decreased viability of MN9D cells in a dose-dependent manner and ACM treatment significantly attenuated rotenone toxicity at each concentration. No significant difference in growth rate was observed between the normal medium and ACM treatment. Four concentrations of ACM, namely 1/3ACM, 1/2ACM, 2/3ACM and pure ACM, all displayed protection, increasing cell viability to (124.15+/-0.79)%, (126.59+/-0.82) %, (125.84+/-0.61) % and (117.15+/-1.63) % of the cells exposed directly to rotenone, respectively. Treatment with ACM through the whole experiment except the initial 24 h, 24 h before or at the same time of rotenone addition all exerted protective effects, with cell viability being (110.11+/-2.52)%, (113.30+/-2.36) %, (114.42+/-2.00)% of the cells exposed directly to rotenone, respectively. Conversely, ACM treatment 12 h after rotenone addition had no protective effect, with cell viability being (102.54+/-1.36)% of the cells exposed directly to rotenone. Moreover, ACM treatment up-regulated GSH level in MN9D cells nearly twofold. Incubation with 100 nmol/L rotenone for 24 h depleted GSH level by nearly two thirds of the control, but ACM treatment mitigated the drop of GSH level, maintaining its content at (147.83+/-0.63)% of the control. Consistent with GSH change, rotenone administration resulted in a positive rate of 96.24% of DCF staining, implying a great extent of oxidative stress, whereas treatment with ACM reduced the extent of oxidative stress to a positive rate of 78.31%. Taken together, these findings suggest that astrocytes protect MN9D cells from oxidative stress caused by rotenone, and GSH partially accounts for the protection. Therefore, astrocytes may play a protective role in the process of PD.
Animals
;
Astrocytes
;
physiology
;
Cells, Cultured
;
Cytoprotection
;
Glutathione
;
analysis
;
physiology
;
Neurons
;
drug effects
;
metabolism
;
Oxidative Stress
;
Rats
;
Rats, Sprague-Dawley
;
Rotenone
;
toxicity
5.Diphenhydramine interferes with MTT reduction assay.
Yao SHEN ; Chen-Hui ZHANG ; Wei-Wei HU ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2011;40(2):163-168
OBJECTIVETo determine the effects of organic amine diphenhydramine on the 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide dye (MTT) reduction assay.
METHODSThe primarily cultured cortical astrocytes were incubated with various concentrations of diphenhydramine for 24 h. To analyze the effects of diphenhydramine and other organic amines on the MTT assay, the data obtained from the MTT assay were compared with the results obtained from morphological observation and hoechst 33342 and propidium iodide (PI) nucleus double staining.
RESULTThe MTT assay showed that diphenhydramine (10(-4)mol/L), pyrilamine (10 (-4)mol/L) and zolantidine (10 (-5)mol/L) caused a significant increase in MTT reduction in astrocytes. However there was no proliferation, apoptosis or necrosis detected by hoechst and PI nucleus double staining. Light microscopy revealed that exocytosis of formazan granules was inhibited by diphenhydramine.
CONCLUSIONDiphenhydramine and other organic amines may enhance MTT reduction by suppression of MTT formazan exocytosis in astrocytes, which may affect the results of cell viability studies.
Animals ; Astrocytes ; drug effects ; metabolism ; physiology ; Cell Survival ; Cells, Cultured ; Diphenhydramine ; pharmacology ; Drug Interactions ; Formazans ; pharmacokinetics ; Rats ; Rats, Sprague-Dawley ; Tetrazolium Salts ; pharmacokinetics
6.Synergistic effect of schwann cells and retinoic acid on differentiation and synaptogenesis of hippocampal neural stem cells in vitro.
Xue-Bao ZHANG ; Yuan-Shan ZENG ; Wei ZHANG ; Ya-Yun CHEN ; Wei ZHANG ; Yi XIONG ; Sui-Jun CHEN
Biomedical and Environmental Sciences 2006;19(3):219-224
OBJECTIVETo investigate the synergistic effect of Schwann cells (SCs) and retinoic acid (RA) on differentiation and synaptogenesis of neural stem cells (NSCs) derived from hippocampus of neonatal rats.
METHODSThe classical method for 2x2 factorial analysis experiment was used to assess synergistic action of SCs and RA. NSCs were treated with RA, SCs, and SCs + RA in DMEM/F12 with 0.5% fetal bovine serum for six days, respectively. Double immunofluorescent staining was used to detect the differentiation of NSCs including nestin, glial fibrillary acidic protein (GFAP) and Map2. The expression of PSD95 was used to demonstrate synaptogenesis.
RESULTSAfter NSCs were treated with RA or SCs, the expression of nestin and GFAP was significantly decreased while the expression of Map2 and PSD95 was significantly increased in comparison with the control. Factorial ANOVA showed that interactions between SCs and RA could induce the expression of Map2 and PSD95.
CONCLUSIONSCs and RA could promote synergistically the neuronal differentiation and synaptogenesis of hippocampal neural stem cells in vitro while they decreased the astrocytes and nestin positive NSCs.
Animals ; Animals, Newborn ; Astrocytes ; cytology ; metabolism ; Cell Differentiation ; drug effects ; physiology ; Cells, Cultured ; Drug Synergism ; Fluorescent Antibody Technique ; Glial Fibrillary Acidic Protein ; metabolism ; Hippocampus ; cytology ; drug effects ; ultrastructure ; Intermediate Filament Proteins ; metabolism ; Nerve Tissue Proteins ; metabolism ; Nestin ; Neurons ; cytology ; drug effects ; ultrastructure ; Rats ; Rats, Sprague-Dawley ; Schwann Cells ; metabolism ; Stem Cells ; cytology ; drug effects ; ultrastructure ; Synapses ; drug effects ; physiology ; Tretinoin ; pharmacology
7.Human Brain Astrocytes Mediate TRAIL-mediated Apoptosis after Treatment with IFN-gamma.
Jeonggi LEE ; Jeon Soo SHIN ; In Hong CHOI
Yonsei Medical Journal 2006;47(3):354-358
TNF-related apoptosis inducing ligand (TRAIL) expressions were studied in primary human brain astrocytes in response to pro-inflammatory cytokines. When astrocytes were treated with IL-1beta TNF-alphaor IFN-gamma TRAIL was induced in cultured fetal astrocytes. In particular, IFN-gammainduced the highest levels of TRAIL in cultured astrocytes. When astrocytes were pre-reated with IFN-gamma they induced apoptosis in TRAIL-sensitive Peer cells. Our results suggest that IFN-gamma modulates the expression of TRAIL in astrocytes, which may enhance cytotoxic sensitivity of infiltrating immune cells or brain cells other than astrocytes during inflammation of brain.
Tumor Necrosis Factor-alpha/genetics/*metabolism
;
TNF-Related Apoptosis-Inducing Ligand
;
Membrane Glycoproteins/genetics/*metabolism
;
Interferon Type II/*pharmacology
;
Humans
;
Cells, Cultured
;
Astrocytes/*cytology/drug effects/metabolism
;
Apoptosis Regulatory Proteins/genetics/*metabolism
;
Apoptosis/*drug effects/physiology
;
Antineoplastic Agents/*pharmacology
8.Human Brain Astrocytes Mediate TRAIL-mediated Apoptosis after Treatment with IFN-gamma.
Jeonggi LEE ; Jeon Soo SHIN ; In Hong CHOI
Yonsei Medical Journal 2006;47(3):354-358
TNF-related apoptosis inducing ligand (TRAIL) expressions were studied in primary human brain astrocytes in response to pro-inflammatory cytokines. When astrocytes were treated with IL-1beta TNF-alphaor IFN-gamma TRAIL was induced in cultured fetal astrocytes. In particular, IFN-gammainduced the highest levels of TRAIL in cultured astrocytes. When astrocytes were pre-reated with IFN-gamma they induced apoptosis in TRAIL-sensitive Peer cells. Our results suggest that IFN-gamma modulates the expression of TRAIL in astrocytes, which may enhance cytotoxic sensitivity of infiltrating immune cells or brain cells other than astrocytes during inflammation of brain.
Tumor Necrosis Factor-alpha/genetics/*metabolism
;
TNF-Related Apoptosis-Inducing Ligand
;
Membrane Glycoproteins/genetics/*metabolism
;
Interferon Type II/*pharmacology
;
Humans
;
Cells, Cultured
;
Astrocytes/*cytology/drug effects/metabolism
;
Apoptosis Regulatory Proteins/genetics/*metabolism
;
Apoptosis/*drug effects/physiology
;
Antineoplastic Agents/*pharmacology
9.Metallothionein-I/II in brain injury repair mechanism and its application in forensic medicine.
Dong LI ; Ru-bo LI ; Ju-li LIN
Journal of Forensic Medicine 2013;29(5):365-377
Metallothionein (MT) is a kind of metal binding protein. As an important member in metallothionein family, MT-I/II regulates metabolism and detoxication of brain metal ion and scavenges free radicals. It is capable of anti-inflammatory response and anti-oxidative stress so as to protect the brain tissue. During the repair process of brain injury, the latest study showed that MT-I/II could stimulate brain anti-inflammatory factors, growth factors, neurotrophic factors and the expression of the receptor, and promote the extension of axon of neuron, which makes contribution to the regeneration of neuron and has important effect on the recovery of brain injury. Based on the findings, this article reviews the structure, expression, distribution, adjustion, function, mechanism in the repair of brain injury of MT-I/II and its application prospect in forensic medicine. It could provide a new approach for the design and manufacture of brain injury drugs as well as for age estimation of the brain injury.
Animals
;
Astrocytes/metabolism*
;
Brain/metabolism*
;
Brain Injuries/pathology*
;
Cytokines/metabolism*
;
Forensic Medicine/methods*
;
Gene Expression Regulation/drug effects*
;
Humans
;
Metallothionein/physiology*
;
Neurons/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Oxidative Stress/drug effects*
10.Differential Expression, Shedding, Cytokine Regulation and Function of TNFR1 and TNFR2 in Human Fetal Astrocytes.
Sun Ju CHOI ; Kyoung Ho LEE ; Hyun Sook PARK ; Soo Ki KIM ; Choon Myung KOH ; Joo Young PARK
Yonsei Medical Journal 2005;46(6):818-826
Tumor necrosis factor (TNF) -alpha induces pleiotropic cellular effects through a 55kDa, type 1 receptor (TNFR1) and a 75kDa type 2 receptor (TNFR2). Moreover, it participates in the pathogenesis of several CNS diseases, including demyelinating diseases. TNF- receptors are differentially expressed and are regulated in many cell types. However, data regarding the TNF-alpha receptor expression and regulation in human astrocytes is limited to date. We investigated TNF-alpha receptor expression, its regulation by cytokines, and its functional role in primary cultured human fetal astrocytes, which are the most abundant cellular population in the central nervous system and are known to be immunologically active. In this study, astrocytes were found to constitutively and predominantly transcribe, translate and shed TNFR1 rather than TNFR2, but TNFR2 expression was increased by adding TNF-alpha, IL-1, and IFN-gamma, but not by adding LPS. To determine the functional roles of TNFR1 and TNFR2 on TNF induction, we investigated NF-kappaB activation and TNF-alpha induction after neutralizing TNFR1 and TNFR2 by an antibody treatment. We found that NF-kappaB activation and TNF-alpha induction are blocked by TNFR1 neutralizing antibody treatments.
Receptors, Tumor Necrosis Factor, Type II/genetics/*metabolism/physiology
;
Receptors, Tumor Necrosis Factor, Type I/genetics/*metabolism/physiology
;
RNA, Messenger/metabolism
;
NF-kappa B/metabolism
;
Humans
;
Gene Expression Regulation
;
Fetus/cytology
;
Cytokines/*pharmacology
;
Cells, Cultured
;
Astrocytes/drug effects/*metabolism