1.Synthesis of a bio-active bone-matrix material and study of the cellular biocompatibility.
Jie HAO ; Qixin ZHENG ; Xiaodong GUO ; Daping QUAN ; Binghong LUO
Journal of Biomedical Engineering 2005;22(3):433-437
To prepare poly(lactic acid/glycolic acid/ asparagic acid-co- polyethylene glycol) (PLGA-[ASP-PEG]) and examine the cellular biocompatibility. PLGA-[ASP-PEG] was obtained by bulk ring-opening copolymerization method, examined by infrared spectrometry (IR) and 1H nuclear magnetic resonance spectroscopy (1H NMR). Bone marrow stromal cells(BMSCs) were cultured with PLGA-[ASP-PEG] (experiment gruop) and PLGA (control group) in vitro respectively, and were observed by phase-contrast microscopy and scanning electron microscopy. The resuls showed that PLGA-[ASP-PEG] was obtained and proved by IR and 1H NMR. The BMSCs of the experiment group could well attach to and extend on the surface of the PLGA-[ASP-PEG], and could proliferate and secrete better extracellular matrix, compared with control. The PLGA-[ASP-PEG] has good cellular a biocompatibility. It can be used as a biomaterial for bone tissue engineering.
Aspartic Acid
;
chemistry
;
Biocompatible Materials
;
Bone Matrix
;
cytology
;
Lactic Acid
;
chemistry
;
Mesenchymal Stromal Cells
;
cytology
;
Polyesters
;
Polyethylene Glycols
;
chemistry
;
Polyglycolic Acid
;
chemistry
;
Polymers
;
chemistry
;
Tissue Engineering
2.The Advantage of Cyclosporine A and Methotrexate Rotational Therapy in Long-Term Systemic Treatment for Chronic Plaque Psoriasis in a Real World Practice.
Chong Won CHOI ; Bo Ri KIM ; Jungyoon OHN ; Sang Woong YOUN
Annals of Dermatology 2017;29(1):55-60
BACKGROUND: Psoriasis is a chronic inflammatory disease. In the treatment of psoriasis, cyclosporine is commonly prescribed systemic agents. However, long-term use of cyclosporine is not recommended because of side effects such as nephrotoxicity or hypertension. OBJECTIVE: To ascertain the improved safety of rotational therapy using cyclosporine and methotrexate, we investigated the frequency of abnormal results in laboratory test after long term rotational therapy using cyclosporine and methotrexate. METHODS: From January 2009 to June 2014, patients who were treated with cyclosporine or methotrexate were enrolled. The clinical data and usage of medications were reviewed. Laboratory tests were conducted before starting the treatment and regularly follow-up. The occurrences of any laboratory abnormalities during the treatments were investigated. RESULTS: A total of 21 psoriatic patients were enrolled. The mean of medication period and cumulative dose of cyclosporine and methotrexate were 497.81±512.06 days and 115.68±184.34 g in cyclosporine and 264.19±264.71 days and 448.71±448.63 mg in methotrexate. Laboratory abnormalities were found in total two patients after rotational therapy: two patients (9.5%) in aspartate aminotransferase/alanine aminotransferase and one patient (4.8%) in uric acid. No laboratory abnormalities were found in renal function test. CONCLUSION: We found that the rotational approaches using cyclosporine and methotrexate reduced the possibility of the development of nephrotoxicity. In addition to other advantage such as quick switching from one agent to another, the rotational therapy using cyclosporine and methotrexate can minimize the adverse events during the systemic treatment of chronic plaque psoriasis.
Aspartic Acid
;
Clinical Chemistry Tests
;
Combined Modality Therapy
;
Cyclosporine*
;
Follow-Up Studies
;
Humans
;
Hypertension
;
Methotrexate*
;
Psoriasis*
;
Uric Acid
3.The Advantage of Cyclosporine A and Methotrexate Rotational Therapy in Long-Term Systemic Treatment for Chronic Plaque Psoriasis in a Real World Practice.
Chong Won CHOI ; Bo Ri KIM ; Jungyoon OHN ; Sang Woong YOUN
Annals of Dermatology 2017;29(1):55-60
BACKGROUND: Psoriasis is a chronic inflammatory disease. In the treatment of psoriasis, cyclosporine is commonly prescribed systemic agents. However, long-term use of cyclosporine is not recommended because of side effects such as nephrotoxicity or hypertension. OBJECTIVE: To ascertain the improved safety of rotational therapy using cyclosporine and methotrexate, we investigated the frequency of abnormal results in laboratory test after long term rotational therapy using cyclosporine and methotrexate. METHODS: From January 2009 to June 2014, patients who were treated with cyclosporine or methotrexate were enrolled. The clinical data and usage of medications were reviewed. Laboratory tests were conducted before starting the treatment and regularly follow-up. The occurrences of any laboratory abnormalities during the treatments were investigated. RESULTS: A total of 21 psoriatic patients were enrolled. The mean of medication period and cumulative dose of cyclosporine and methotrexate were 497.81±512.06 days and 115.68±184.34 g in cyclosporine and 264.19±264.71 days and 448.71±448.63 mg in methotrexate. Laboratory abnormalities were found in total two patients after rotational therapy: two patients (9.5%) in aspartate aminotransferase/alanine aminotransferase and one patient (4.8%) in uric acid. No laboratory abnormalities were found in renal function test. CONCLUSION: We found that the rotational approaches using cyclosporine and methotrexate reduced the possibility of the development of nephrotoxicity. In addition to other advantage such as quick switching from one agent to another, the rotational therapy using cyclosporine and methotrexate can minimize the adverse events during the systemic treatment of chronic plaque psoriasis.
Aspartic Acid
;
Clinical Chemistry Tests
;
Combined Modality Therapy
;
Cyclosporine*
;
Follow-Up Studies
;
Humans
;
Hypertension
;
Methotrexate*
;
Psoriasis*
;
Uric Acid
4.Preparation of metal chelate affinity chromatographic medium and its application in the purification of 6 x histidine-tagged protein.
Shu-Juan LI ; Yong-Liang SUN ; Dao-Dao HU ; Chao CHEN ; Ya-Li CUI
Chinese Journal of Biotechnology 2007;23(5):941-946
Using Sepharose CL-6B as support, 3-Chloro-1, 2-epoxypropane as activated agent, carboxymethylated aspartate (CM-Asp) as chelating ligand, A chelate affinity chromatographic medium based on Co2+, named Co-CM-Asp-Sepharose, was prepared and used to purify 6 x His-tagged fusion proteins. The amount of Co-CM-Asp-Sepharose reacted with 200 microL of lysate, the incubation time, wash condition and the imidazole concentration in the elution buffer were optimized. The purification results using Co-CM-Asp-Sepharose and Ni-NTA-Agarose (product of Qiagen) were compared. The CD155D1 fusion protein was also purified from 5mL of lysate and the amount of protein was determined by Bradford method. The results show that 60 microL of Co-CM-Asp-Sepharose (50% suspension) was suitable for the protein purification from 200 microL of lysate, the optimal incubation time of medium and lysate was 30 min, the optimal imidazole concentration in the eluting buffer was 200 mmol/L, and 200 microg of fusion protein was obtained. In a big scale experiment, 4.6 mg of fusion protein was obtained from 5 mL of lysate using 1.5 mL of Co-CM-Asp-Sepharose (50% suspension). Compared with Ni-NTA-Agarose, the Co-CM-Asp-Sepharose medium exhibits higher selectivity and the protein possesses higher purity.
Aspartic Acid
;
chemistry
;
Chelating Agents
;
chemistry
;
Chromatography, Affinity
;
methods
;
Epoxy Compounds
;
chemistry
;
Histidine
;
biosynthesis
;
chemistry
;
genetics
;
Polymers
;
chemistry
;
Recombinant Fusion Proteins
;
isolation & purification
;
Sepharose
;
chemistry
5.Arg-Gly-Asp-containing peptide combining with the biomimetic and modified PLGA-(ASP-PEG).
Yulin SONG ; Qixin ZHENG ; Xiaodong GUO ; Jie HAO
Journal of Biomedical Engineering 2008;25(4):860-863
Arg-Gly-Asp-(RGD) containing peptide characterized as the non-viral gene vector was synthesized to modify the surface of PLGA-(ASP-PEG). The Peptide (K16-GRGDSPC) was synthesized. PLGA-(ASP-PEG) was executed into chips A, B and C. Chip C was regarded as control. Chips A and B reacted with the cross-linker, then Chip A reacted with peptide. Mass spectrometry (MS) and high performance liquid chromatography (HPLC) detected the molecular weight and the purity of peptide. Sulphur in the surface of materials was detected by X-ray photoelectron spectrometry (XPS). The peptide content in the residual solution was detected by Spectrometer. HPLC showed the peptide purity was 94.13%; MS showed the molecular weight was 2741.26. XPS revealed the binding energy of the sulphur in reacted Chip A was 164 eV in reacted Chip B, 164eV and 162 eV; the ratios of carbon to sulphur in reacted Chip A and B were 99.746:0.1014 and 99.574:0.4255, respectively. There was no sulphur in Chip C. The optical density value (OD) of the resident solution was 0.069. The peptide density of reacted Chip A was 0.04 mg/mm2. The peptide was manufactured and linked to the surface of the biomimetic PLGA-(ASP-PEG) with the cross-linker.
Aspartic Acid
;
chemistry
;
Biocompatible Materials
;
chemistry
;
Cross-Linking Reagents
;
chemistry
;
Genetic Vectors
;
chemical synthesis
;
chemistry
;
Humans
;
Lactic Acid
;
chemistry
;
Oligopeptides
;
chemistry
;
Polyethylene Glycols
;
chemistry
;
Polyglycolic Acid
;
chemistry
;
Surface Properties
;
Tissue Engineering
6.Synthesis, characterization and in vitro release of poly (succinimide-co-4-aminobutanoic acid) by acid-catalyzed polycondensation of L-aspartic acid and 4-aminobutanoic acid.
Journal of Biomedical Engineering 2003;20(3):392-397
For the purpose of increasing the hydrophilicity of poly aspartic acid, a series of polymer of L-aspartic acid and 4-aminobutanoic acid with different ratios (mol/mol) were prepared. The copolymers were characterized by 13CNMR, DSC and x-ray. The confirmed the structures of the polymers. In-vitro tests of release at phosphate buffer saline, enzyme solution of trypsin and papain (37.0 degrees C, pH = 7.4) were carried out. The result indicated that the polymers could be degraded in some degree, and that 4-aminobutanoic acid segments accelerated the degradation rate of the polymers. Skin irritation test and systemic acute toxicity test were carried out, which showed that the polymer was a nontoxic biomedical material.
Animals
;
Aspartic Acid
;
chemistry
;
Female
;
Hydrolysis
;
Male
;
Materials Testing
;
Mice
;
Polymers
;
chemical synthesis
;
chemistry
;
metabolism
;
toxicity
;
Rabbits
;
gamma-Aminobutyric Acid
;
chemistry
7.Conserved motifs in voltage sensing proteins.
Chang-He WANG ; Zhen-Li XIE ; Jian-Wei LV ; Zhi-Dan YU ; Shu-Li SHAO
Acta Physiologica Sinica 2012;64(4):379-386
This paper was aimed to study conserved motifs of voltage sensing proteins (VSPs) and establish a voltage sensing model. All VSPs were collected from the Uniprot database using a comprehensive keyword search followed by manual curation, and the results indicated that there are only two types of known VSPs, voltage gated ion channels and voltage dependent phosphatases. All the VSPs have a common domain of four helical transmembrane segments (TMS, S1-S4), which constitute the voltage sensing module of the VSPs. The S1 segment was shown to be responsible for membrane targeting and insertion of these proteins, while S2-S4 segments, which can sense membrane potential, for protein properties. Conserved motifs/residues and their functional significance of each TMS were identified using profile-to-profile sequence alignments. Conserved motifs in these four segments are strikingly similar for all VSPs, especially, the conserved motif [RK]-X(2)-R-X(2)-R-X(2)-[RK] was presented in all the S4 segments, with positively charged arginine (R) alternating with two hydrophobic or uncharged residues. Movement of these arginines across the membrane electric field is the core mechanism by which the VSPs detect changes in membrane potential. The negatively charged aspartate (D) in the S3 segment is universally conserved in all the VSPs, suggesting that the aspartate residue may be involved in voltage sensing properties of VSPs as well as the electrostatic interactions with the positively charged residues in the S4 segment, which may enhance the thermodynamic stability of the S4 segments in plasma membrane.
Arginine
;
chemistry
;
Aspartic Acid
;
chemistry
;
Cell Membrane
;
physiology
;
Conserved Sequence
;
Ion Channel Gating
;
Ion Channels
;
chemistry
;
Membrane Potentials
;
Protein Structure, Tertiary
8.NMR-based analysis of water soluble extracts of different Astragali Radix.
Dong TIAN ; Zhen-Yu LI ; Sheng-Ci FAN ; Jin-Ping JIA ; Xue-Mei QIN
Acta Pharmaceutica Sinica 2014;49(1):89-94
Water soluble extract (WSE) is an important index for the quality evaluation of Astragali Radix (AR). In this study, the WSE of the wild AR from Shanxi province (SX) and the cultivated AR from Gansu Province (GS) were compared. The WSEs of two types of AR were determined according to the appendix of Chinese pharmacopoeia. Then the WSEs were subjected to NMR analysis, and the obtained data were analyzed using HCA, PCA, OPLS-DA, microarray analysis, and Spearman rank analysis. In addition, the Pearson correlation of differential metabolites were also calculated. The results showed that the WSE content of GS-AR (37.80%) was higher than that of SX-AR (32.13%). The main constituent of WSE was sucrose, and other 18 compounds, including amino acids, organic acids, were also detected. Multivariate analysis revealed that SX-AR contained more choline, succinic acid, citric acid, glutamate, taurine and aspartate, while GS samples contained more sucrose, arginine and fumaric acid. In addition, the Pearson correlations between different metabolites of the two types of AR also showed apparent differences. The results suggested that the WSE of two types of AR differs not only in the content, but also in the chemical compositions. Thus, the cultivation way is important to the quality of AR. This study supplied a new method for the comparison of extract of herbal drugs.
Arginine
;
analysis
;
Aspartic Acid
;
analysis
;
Choline
;
analysis
;
Citric Acid
;
analysis
;
Drugs, Chinese Herbal
;
analysis
;
chemistry
;
Fumarates
;
analysis
;
Glutamic Acid
;
analysis
;
Magnetic Resonance Spectroscopy
;
Multivariate Analysis
;
Phylogeography
;
Plant Roots
;
chemistry
;
Plants, Medicinal
;
chemistry
;
Succinic Acid
;
analysis
;
Sucrose
;
analysis
;
Taurine
;
analysis
9.Adhesion, proliferation and osteodifferentiation of bone mesenchymal stem cells on PLGA-ASP-PEG tri-bolck polymer scaffolds.
Zhi-xia DUAN ; Qi-xin ZHENG ; Xiao-dong GUO ; Yu BAI ; Quan YUAN ; Shun-guang CHEN
China Journal of Orthopaedics and Traumatology 2008;21(4):282-284
OBJECTIVETo explore the adhesion,proliferation and osteodifferentiation of bone mesenchymal stem cells (BMSCs)on the prepared lactic acid/glycolic acid/asparagic acid-co-polyethylene glycol(PLGA-[ASP-PEG])tri-block polymer scaffolds.
METHODSModified PLGA with polyethylene glycol (PEG) and asparagic acid(ASP)that has many liga nds,and then the synthesis PLGA-[ASP-PEG] tri-block polymer material was prepared. BMSCs were cultured in PLGA-[ASP-PEG] polymer material and poly lactic acid-co-glycolic acid(PLGA)were used as control group. Precipitation method, MUT assay and total cellular protein detection were used to test the adhersion and proliferation of BMSCs. After the third generation of BMSCs was cultured on PLGA-[ASP-PEG] tri-block polymer scaffolds for 14 day and 28 day with osteogenic supplements,the osteodifferentiation of MSCs were observed through alkaline phosphatase(ALP) staining and calcium tubercle staining.
RESULTSBMSCs grew adherent to the surface of PLGA-[ASP-PEG] polymer scaffolds and the number of BMSCs was much higher than that of PLGA. The precipitation method suggested that adhesion and proliferation of BMSCs on the surface of PLGA-[ASP-PEG] was much higher than the control group (P < 0.05). MTU assay showed that after BMSCs were cultured for 20 days,the absorbance A of PLGA-[ASP-PEG] polymer scaffolds and PLGA were 1.336 and 0.780 respectively. Total cellular protein could image the adhersion and proliferation of BMSCs indirectly. After BMSCs were cultured for 12 days,the total cellular protein of PLGA-[ASP-PEG] and PLGA were 66.44 microg/pore and 41.23 microg/pore respectively. PLGA-[ASP-PEG] polymer scaffolds had well biocompatibility and cell adhersion. The positive results with ALP staining and calcium tubercle staining in both groups indicated tri-block polymer scaffold and its degradations had no effect on osteodifferentiation.
CONCLUSIONPLGA-[ASP-PEG]could improve the adhesion and proliferation of seed cells on bone-matrixmaterial, maintain the morphous of seed cells and had no obvious effect on cell osteodifferentiation.
Animals ; Aspartic Acid ; chemistry ; Bone and Bones ; cytology ; Cell Adhesion ; Cell Differentiation ; Cell Proliferation ; Female ; Lactic Acid ; chemistry ; Male ; Mesenchymal Stromal Cells ; cytology ; Polyethylene Glycols ; chemistry ; Polyglycolic Acid ; chemistry ; Rats ; Rats, Sprague-Dawley ; Tissue Engineering
10.Changes of amino acid content in hippocampus of epileptic rats treated with volatile oil of Acorus tatarinowii.
China Journal of Chinese Materia Medica 2004;29(7):670-673
OBJECTIVETo study the changes of excitatory and inhibitory amino acid content in hippocampus of epileptic rats treated with volatile oil of A. tatarinowii, and explore the possible antiepiletic mechanism.
METHODThe volatile oil was extracted through Supercritical-CO2 Fluid Extraction (SFE-CO2), and epileptic models were built up by kainic acid (KA) lateral ventricle injection. The content of amino acid in hippocampus of epileptic rats treated with volatile oil was calculated.
RESULTThe content of GABA increased and Glu decreased prominently (P < 0.05) after volatile oil 35 mg x kg(-1) intraperitoneal injection.
CONCLUSIONThe volatile oil of A. tatarinowii can modulate the balance of excitatory and inhibitory amino acid in epileptic rats, thereby exerting its antiepileptic effect.
Acorus ; chemistry ; Animals ; Anticonvulsants ; pharmacology ; Aspartic Acid ; metabolism ; Epilepsy ; chemically induced ; metabolism ; Glutamic Acid ; metabolism ; Hippocampus ; metabolism ; Kainic Acid ; Male ; Oils, Volatile ; isolation & purification ; pharmacology ; Plants, Medicinal ; chemistry ; Rats ; Rats, Sprague-Dawley ; gamma-Aminobutyric Acid ; metabolism