1. Evaluation of antioxidant, in vitro cytotoxicity of micropropagated and naturally grown plants of Leptadenia reticulata (Retz.) Wight & Arn.-an endangered medicinal plant
Sudipta Kumar MOHANTY ; Anuradha MANIYAM ; Kumaraswamy MALAPPA ; Anuradha MANIYAM ; Ashok GODAVARTHI ; Balasubramanya SUBBANARASIMAN ; Anuradha MANIYAM
Asian Pacific Journal of Tropical Medicine 2014;7(S1):S267-S271
Objective: To evaluate the antioxidant and anti proliferative potential of different solvent extract of micropropagated and naturally grown plants of Leptadenia reticulata against various cancer cell lines. Methods: In this study different extract were tested for cytotoxicity against human breast adenocarcinoma cell line MCF-7, human colon adenocarcinoma grade II cell line HT-29 and non cancer skeletal muscle cell line L6 through 3-(4, 5-dimethyl thiazol-2-yl)-5-diphenyl tetrazolium bromide assay. The total antioxidant potential was estimated by three different antioxidant model diphenylpicrylhydrazyl free radical scavenging activity, H
2.Methanolic extract of Momordica cymbalaria enhances glucose uptake in L6 myotubes in vitro by up-regulating PPAR-γ and GLUT-4.
Puttanarasaiah Mahesh KUMAR ; Marikunte V VENKATARANGANNA ; Kirangadur MANJUNATH ; Gollapalle L VISWANATHA ; Godavarthi ASHOK
Chinese Journal of Natural Medicines (English Ed.) 2014;12(12):895-900
The present study was undertaken to evaluate the influence of the methanolic fruit extract of Momordica cymbalaria (MFMC) on PPARγ (Peroxisome Proliferator Activated Receptor gamma) and GLUT-4 (Glucose transporter-4) with respect to glucose transport. Various concentrations of MFMC ranging from 62.5 to 500 μg·mL(-1) were evaluated for glucose uptake activity in vitro using L6 myotubes, rosiglitazone was used as a reference standard. The MFMC showed significant and dose-dependent increase in glucose uptake at the tested concentrations, further, the glucose uptake activity of MFMC (500 μg·mL(-1)) was comparable with rosigilitazone. Furthermore, MFMC has shown up-regulation of GLUT-4 and PPARγ gene expressions in L6 myotubes. In addition, the MFMC when incubated along with cycloheximide (CHX), which is a protein synthesis inhibitor, has shown complete blockade of glucose uptake. This indicates that new protein synthesis is required for increased GLUT-4 translocation. In conclusion, these findings suggest that MFMC is enhancing the glucose uptake significantly and dose dependently through the enhanced expression of PPARγ and GLUT-4 in vitro.
Biological Transport
;
Dose-Response Relationship, Drug
;
Fruit
;
Gene Expression
;
drug effects
;
Glucose
;
metabolism
;
Glucose Transporter Type 4
;
metabolism
;
Hypoglycemic Agents
;
pharmacology
;
In Vitro Techniques
;
Insulin
;
metabolism
;
Momordica
;
Muscle Fibers, Skeletal
;
drug effects
;
PPAR gamma
;
metabolism
;
Plant Extracts
;
pharmacology
;
Protein Biosynthesis
;
Protein Synthesis Inhibitors
;
pharmacology
;
Rosiglitazone
;
Thiazolidinediones
;
pharmacology
;
Up-Regulation