1.Development of Aspergillus fumigatus-induced chronic atopic dermatitis mouse model
Arum PARK ; Hyojung PARK ; Jinho YU
Allergy, Asthma & Respiratory Disease 2019;7(3):150-157
PURPOSE: Atopic dermatitis (AD) is the most common chronic and relapsing inflammatory skin disease with skin barrier defects and altered immune responses. Chronic inflammation leads to irreversible fibrosis in the skin and there is no treatment to completely abolish the inflammation and fibrosis. To prevent or treat the chronic process of AD, it is necessary to develop a murine model of AD that reflects the chronic process to identify the mechanism. The aims of this study were to develop a chronic AD model with a crude extract Aspergillus fumigatus (Af) antigen. METHODS: We applied Af extract (40 µg) epicutaneously to the dorsal skin of BALB/c mice for 5 consecutive days per week during a period of 5 weeks for a chronic AD model, and 5 consecutive days repeatedly with 2 weeks interval for an acute AD model. RESULTS: The clinical score and transepidermal water loss were more increased in the chronic AD model than in the acute AD model. Histologic findings showed that more increased epidermal thickness, neutrophil infiltration and hyperkeratosis in the chronic model than in the acute model. Skin fibrosis was more prominent in the chronic model than in the acute model. The mRNA expression levels of transforming growth factor (TGF)-β, thymic stromal lymphopoietin, and interleukin-33 were increased in the skin of the chronic model compared to the acute model. The levels of total IgE, Af-specific IgE, IgG1, and IgG2a were significantly increased in the chronic model compared to controls. CONCLUSION: The Af-induced chronic AD model showed prominent fibrosis and increased TGF-β expression in the skin, which suggests that these models may be useful in the research for the mechanism of the chronic process in AD.
Animals
;
Aspergillus fumigatus
;
Aspergillus
;
Dermatitis, Atopic
;
Fibrosis
;
Immunoglobulin E
;
Immunoglobulin G
;
Inflammation
;
Interleukin-33
;
Mice
;
Neutrophil Infiltration
;
RNA, Messenger
;
Skin
;
Skin Diseases
;
Transforming Growth Factors
;
Water
2.ERRATUM: Correction of Funding Resource: Development of Aspergillus fumigatus-induced chronic atopic dermatitis mouse model
Arum PARK ; Hyojung PARK ; Jinho YU
Allergy, Asthma & Respiratory Disease 2019;7(4):222-222
In this article, the funding resource was misprinted unintentionally.
3.Action Research on Development and Application of Internet of Things Services in Hospital.
Arum PARK ; Hyejung CHANG ; Kyoung Jun LEE
Healthcare Informatics Research 2017;23(1):25-34
OBJECTIVES: Services based on the Internet of Things (IoT) technologies have emerged in various business environments. To enhance health service quality and maximize benefits, this study applied an IoT technology based on NFC and iBeacon as an omni-channel service for patient care in hospitals. METHODS: Application of the IoT technology based on NFC and iBeacon was conducted in a general hospital during August 2015 through June 2016, and the development and evaluation results were aligned to an action research framework. The five phases in the action research included diagnosing, planning action, taking action, evaluating action, and specifying learning phases. RESULTS: During the first two phases, problems of functional operations in a hospital were diagnosed and eight service models were designed by using iBeacon and NFC to solve the problems. Service models were applied to the hospital by installing beacons, wearable beacons, beacon scanners, and NFC tags during the third phase. During the fourth and fifth phases, the roles and benefits of stakeholders participating in the service models were evaluated, and issues and knowledge of the whole application process were derived and summarized from technological, economic, social and legal perspectives, respectively. CONCLUSIONS: From an action research perspective, IoT-based healthcare services were developed and verified. IoT-based services enable the hospital to acquire lifelog data for precision medicine and ultimately be able to go one step closer to precision medical care. The derived service models could provide patients more enhanced healthcare services and improve the work efficiency and effectiveness of the hospital.
Commerce
;
Computer Communication Networks
;
Delivery of Health Care
;
Health Services
;
Health Services Research*
;
Hospital Communication Systems
;
Hospitals, General
;
Humans
;
Internet*
;
Learning
;
Patient Care
;
Precision Medicine
;
Telemedicine
;
Wireless Technology
4.How to Sustain Smart Connected Hospital Services: An Experience from a Pilot Project on IoT-Based Healthcare Services.
Arum PARK ; Hyejung CHANG ; Kyoung Jun LEE
Healthcare Informatics Research 2018;24(4):387-393
OBJECTIVES: This paper describes an experience of implementing seamless service trials online and offline by adopting Internet of Things (IoT) technology based on near-field communication (NFC) tags and Bluetooth low-energy (BLE) beacons. The services were provided for both patients and health professionals. METHODS: The pilot services were implemented to enhance healthcare service quality, improve patient safety, and provide an effective business process to health professionals in a tertiary hospital in Seoul, Korea. The services to enhance healthcare service quality include healing tours, cancer information/education, psychological assessments, indoor navigation, and exercise volume checking. The services to improve patient safety are monitoring of high-risk inpatients and delivery of real-time health information in emergency situations. In addition, the services to provide an effective business process to health professionals include surveys and web services for patient management. RESULTS: Considering the sustainability of the pilot services, we decided to pause navigation and patient monitoring services until the interference problem could be completely resolved because beacon signal interference significantly influences the quality of services. On the other hand, we had to continue to provide new wearable beacons to high-risk patients because of hygiene issues, so the cost increased over time and was much higher than expected. CONCLUSIONS: To make the smart connected hospital services sustainable, technical feasibility (e.g., beacon signal interference), economic feasibility (e.g., continuous provision of new necklace beacons), and organizational commitment and support (e.g., renewal of new alternative medical devices and infrastructure) are required.
Commerce
;
Delivery of Health Care*
;
Emergencies
;
Hand
;
Health Occupations
;
Humans
;
Hygiene
;
Inpatients
;
Internet
;
Korea
;
Mobile Applications
;
Monitoring, Physiologic
;
Patient Safety
;
Pilot Projects*
;
Radio Frequency Identification Device
;
Seoul
;
Smartphone
;
Tertiary Care Centers
5.Keratinization of Lung Squamous Cell Carcinoma Is Associated with Poor Clinical Outcome.
Hye Jung PARK ; Yoon Jin CHA ; Seong Han KIM ; Arum KIM ; Eun Young KIM ; Yoon Soo CHANG
Tuberculosis and Respiratory Diseases 2017;80(2):179-186
BACKGROUND: Although the World Health Organization (WHO) classification of lung squamous cell carcinoma (SCC) was revised in 2015, its clinical implications for lung SCC subsets remain unclear. We investigated whether the morphologic characteristics of lung SCC, including keratinization, were associated with clinical parameters and clinical outcome of patients. METHODS: A total of 81 patients who underwent curative surgical resection of diagnosed lung SCC, were enrolled in this study. Attributes such as keratinization, tumor budding, single cell invasion, and nuclear size within the tumor, as well as immunohistochemistry of Bcl-xL and pS6 expressions, were evaluated. RESULTS: The keratinizing and nonkeratinizing subtypes did not differ with respect to age, sex, TNM stage, and morphologic parameters such as nuclear diameter, tumor budding, and single cell invasion at the tumor edge. Most patients with the keratinizing subtype (98.0%) had a history of smoking, whereas the nonkeratinizing group had a relatively higher proportion of never-smokers relative to the keratinizing group (24.0% vs. 2.0%; p=0.008, chi-square test). Expression of pS6 (a surrogate marker of mammalian target of rapamycin complex 1 [mTORC1] signaling that regulates keratinocyte differentiation), and Bcl-xL (a key anti-apoptotic molecule that may inhibit keratinization), did not correlate significantly with the presence of keratinization. Patients with the keratinizing subtype had a significantly shorter overall survival (85.2 months vs. 135.7 months, p=0.010, log-rank test), and a multivariate analysis showed that keratinization was an independent, poor prognostic factor (hazard ratio, 2.389; 95% confidence interval, 1.090–5.233; p=0.030). CONCLUSION: In lung SCC, keratinization is associated with a poor prognosis, and might be associated with smoking.
bcl-X Protein
;
Biomarkers
;
Carcinoma, Squamous Cell*
;
Classification
;
Epithelial Cells*
;
Humans
;
Immunohistochemistry
;
Keratinocytes
;
Lung*
;
Multivariate Analysis
;
Prognosis
;
Sirolimus
;
Smoke
;
Smoking
;
World Health Organization
6.Type 2 Innate Lymphoid Cells and Skin Fibrosis in a Murine Model of Atopic Dermatitis-Like Skin Inflammation
Jisun YOON ; Jiho LEE ; Arum PARK ; Jin YOON ; Jeong Ryun KIM ; Gyeong Joon MOON ; Jinho YU
Journal of Korean Medical Science 2024;39(30):e221-
Background:
Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease.Although murine studies have demonstrated that type 2 innate lymphoid cells (ILCs) mediate type 2 skin inflammation, their role in skin fibrosis in AD remains unclear. This study investigated whether type 2 ILCs are involved in skin fibrosis using an AD-like murine model.
Methods:
C57BL/6 mice were treated epicutaneously with Aspergillus fumigatus (Af) for 5 consecutive days per week for 5 weeks to induce skin fibrosis. Mature lymphocyte deficient Rag1−/− mice were also used to investigate the role of type 2 ILCs in skin fibrosis.
Results:
The clinical score and transepidermal water loss (TEWL) were significantly higher in the AD group than in the control group. The AD group also showed significantly increased epidermal and dermal thicknesses and significantly higher numbers of eosinophils, neutrophils, mast cells, and lymphocytes in the lesional skin than the control group. The lesional skin of the AD group showed increased stain of collagen and significantly higher levels of collagen than the control group (10.4 ± 2.2 µg/mg vs. 1.6 ± 0.1 µg/mg, P < 0.05). The AD group showed significantly higher populations of type 2 ILCs in the lesional skin compared to the control group (0.08 ± 0.01% vs. 0.03 ± 0.01%, P < 0.05). These findings were also similar with the AD group of Rag1−/− mice compared to their control group. Depletion of type 2 ILCs with anti-CD90.2 monoclonal antibodies significantly improved clinical symptom score, TEWL, and infiltration of inflammatory cells, and significantly decreased levels of collagen were observed in the AD group of Rag1−/− mice (1.6 ± 0.0 μg/mg vs. 4.5 ± 0.3 μg/mg, P < 0.001).
Conclusion
In the Af-induced AD-like murine model, type 2 ILCs were elevated, with increased levels of collagen. Additionally, removal of type 2 ILCs resulted in decreased collagen levels and improved AD-like pathological findings. These findings suggest that type 2 ILCs play a role in the mechanism of skin fibrosis in AD.
7.Type 2 Innate Lymphoid Cells and Skin Fibrosis in a Murine Model of Atopic Dermatitis-Like Skin Inflammation
Jisun YOON ; Jiho LEE ; Arum PARK ; Jin YOON ; Jeong Ryun KIM ; Gyeong Joon MOON ; Jinho YU
Journal of Korean Medical Science 2024;39(30):e221-
Background:
Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease.Although murine studies have demonstrated that type 2 innate lymphoid cells (ILCs) mediate type 2 skin inflammation, their role in skin fibrosis in AD remains unclear. This study investigated whether type 2 ILCs are involved in skin fibrosis using an AD-like murine model.
Methods:
C57BL/6 mice were treated epicutaneously with Aspergillus fumigatus (Af) for 5 consecutive days per week for 5 weeks to induce skin fibrosis. Mature lymphocyte deficient Rag1−/− mice were also used to investigate the role of type 2 ILCs in skin fibrosis.
Results:
The clinical score and transepidermal water loss (TEWL) were significantly higher in the AD group than in the control group. The AD group also showed significantly increased epidermal and dermal thicknesses and significantly higher numbers of eosinophils, neutrophils, mast cells, and lymphocytes in the lesional skin than the control group. The lesional skin of the AD group showed increased stain of collagen and significantly higher levels of collagen than the control group (10.4 ± 2.2 µg/mg vs. 1.6 ± 0.1 µg/mg, P < 0.05). The AD group showed significantly higher populations of type 2 ILCs in the lesional skin compared to the control group (0.08 ± 0.01% vs. 0.03 ± 0.01%, P < 0.05). These findings were also similar with the AD group of Rag1−/− mice compared to their control group. Depletion of type 2 ILCs with anti-CD90.2 monoclonal antibodies significantly improved clinical symptom score, TEWL, and infiltration of inflammatory cells, and significantly decreased levels of collagen were observed in the AD group of Rag1−/− mice (1.6 ± 0.0 μg/mg vs. 4.5 ± 0.3 μg/mg, P < 0.001).
Conclusion
In the Af-induced AD-like murine model, type 2 ILCs were elevated, with increased levels of collagen. Additionally, removal of type 2 ILCs resulted in decreased collagen levels and improved AD-like pathological findings. These findings suggest that type 2 ILCs play a role in the mechanism of skin fibrosis in AD.
8.Type 2 Innate Lymphoid Cells and Skin Fibrosis in a Murine Model of Atopic Dermatitis-Like Skin Inflammation
Jisun YOON ; Jiho LEE ; Arum PARK ; Jin YOON ; Jeong Ryun KIM ; Gyeong Joon MOON ; Jinho YU
Journal of Korean Medical Science 2024;39(30):e221-
Background:
Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease.Although murine studies have demonstrated that type 2 innate lymphoid cells (ILCs) mediate type 2 skin inflammation, their role in skin fibrosis in AD remains unclear. This study investigated whether type 2 ILCs are involved in skin fibrosis using an AD-like murine model.
Methods:
C57BL/6 mice were treated epicutaneously with Aspergillus fumigatus (Af) for 5 consecutive days per week for 5 weeks to induce skin fibrosis. Mature lymphocyte deficient Rag1−/− mice were also used to investigate the role of type 2 ILCs in skin fibrosis.
Results:
The clinical score and transepidermal water loss (TEWL) were significantly higher in the AD group than in the control group. The AD group also showed significantly increased epidermal and dermal thicknesses and significantly higher numbers of eosinophils, neutrophils, mast cells, and lymphocytes in the lesional skin than the control group. The lesional skin of the AD group showed increased stain of collagen and significantly higher levels of collagen than the control group (10.4 ± 2.2 µg/mg vs. 1.6 ± 0.1 µg/mg, P < 0.05). The AD group showed significantly higher populations of type 2 ILCs in the lesional skin compared to the control group (0.08 ± 0.01% vs. 0.03 ± 0.01%, P < 0.05). These findings were also similar with the AD group of Rag1−/− mice compared to their control group. Depletion of type 2 ILCs with anti-CD90.2 monoclonal antibodies significantly improved clinical symptom score, TEWL, and infiltration of inflammatory cells, and significantly decreased levels of collagen were observed in the AD group of Rag1−/− mice (1.6 ± 0.0 μg/mg vs. 4.5 ± 0.3 μg/mg, P < 0.001).
Conclusion
In the Af-induced AD-like murine model, type 2 ILCs were elevated, with increased levels of collagen. Additionally, removal of type 2 ILCs resulted in decreased collagen levels and improved AD-like pathological findings. These findings suggest that type 2 ILCs play a role in the mechanism of skin fibrosis in AD.
9.Type 2 Innate Lymphoid Cells and Skin Fibrosis in a Murine Model of Atopic Dermatitis-Like Skin Inflammation
Jisun YOON ; Jiho LEE ; Arum PARK ; Jin YOON ; Jeong Ryun KIM ; Gyeong Joon MOON ; Jinho YU
Journal of Korean Medical Science 2024;39(30):e221-
Background:
Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease.Although murine studies have demonstrated that type 2 innate lymphoid cells (ILCs) mediate type 2 skin inflammation, their role in skin fibrosis in AD remains unclear. This study investigated whether type 2 ILCs are involved in skin fibrosis using an AD-like murine model.
Methods:
C57BL/6 mice were treated epicutaneously with Aspergillus fumigatus (Af) for 5 consecutive days per week for 5 weeks to induce skin fibrosis. Mature lymphocyte deficient Rag1−/− mice were also used to investigate the role of type 2 ILCs in skin fibrosis.
Results:
The clinical score and transepidermal water loss (TEWL) were significantly higher in the AD group than in the control group. The AD group also showed significantly increased epidermal and dermal thicknesses and significantly higher numbers of eosinophils, neutrophils, mast cells, and lymphocytes in the lesional skin than the control group. The lesional skin of the AD group showed increased stain of collagen and significantly higher levels of collagen than the control group (10.4 ± 2.2 µg/mg vs. 1.6 ± 0.1 µg/mg, P < 0.05). The AD group showed significantly higher populations of type 2 ILCs in the lesional skin compared to the control group (0.08 ± 0.01% vs. 0.03 ± 0.01%, P < 0.05). These findings were also similar with the AD group of Rag1−/− mice compared to their control group. Depletion of type 2 ILCs with anti-CD90.2 monoclonal antibodies significantly improved clinical symptom score, TEWL, and infiltration of inflammatory cells, and significantly decreased levels of collagen were observed in the AD group of Rag1−/− mice (1.6 ± 0.0 μg/mg vs. 4.5 ± 0.3 μg/mg, P < 0.001).
Conclusion
In the Af-induced AD-like murine model, type 2 ILCs were elevated, with increased levels of collagen. Additionally, removal of type 2 ILCs resulted in decreased collagen levels and improved AD-like pathological findings. These findings suggest that type 2 ILCs play a role in the mechanism of skin fibrosis in AD.
10.Innate Type 2 Response to Aspergillus fumigatus in a Murine Model of Atopic Dermatitis–like Skin Inflammation
Arum PARK ; Eun LEE ; Hyojung PARK ; Mee-Na PARK ; Jiho LEE ; Kun Baek SONG ; Jisun YOON ; Sungsu JUNG ; Nayoung SUH ; Jin YOON ; Jinho YU
Journal of Korean Medical Science 2021;36(40):e261-
Background:
Atopic dermatitis (AD) is a chronic and relapsing inflammatory skin disease mediated by T helper type 2 (Th2) cells in acute phase. Group 2 innate lymphoid cells (ILCs) play a role in the initiation of the Th2 response. Although mold exposure is associated with the development of AD, studies on the underlying mechanisms are lacking. This study investigated whether group 2 ILCs are involved in inflammation in AD-like skin induced by Aspergillus fumigatus (Af).
Methods:
We investigated changes of group 2 ILCs population in Af-induced AD-like skin lesions. To induce AD-like skin lesions, Af extracts were applied to the dorsal skin of BALB/c and Rag1−/− mice five times per week, with repeat exposures at 2-week intervals.
Results:
The clinical parameters were higher in the Af-treated group than in the control group. Histologic findings revealed epiderrmal and dermal thickening as well as eosinophil and mast cell infiltration into the skin of Af-treated mice. Populations of group 2 ILCs in the skin were also significantly higher in the Af-treated group. In addition, interleukin-33 mRNA expression was significantly higher in the skin lesions of the Af-treated mice. In the Rag1−/− mice lacking mature lymphocytes, AD-like skin lesions were still induced by Af and ILCs depletion using an anti-CD90.2 mAb lowered the Af-induced inflammatory response.
Conclusions
Group 2 ILCs may play a role in a murine model of Af-induced AD-like skin lesions.