1.Analysis of SSR information in EST resource of sweet wormwood (Artemisia annua) and development of EST-SSR marker.
Ying WANG ; Hanqiang CAI ; Weizhang JIA
China Journal of Chinese Materia Medica 2012;37(5):570-574
OBJECTIVETo study the distribution frequency and characteristics of nucleotide repeat of 94 923 ESTs for developing microsatellite primers, providing a theoretical basis and technical support for appropriate conservation and application of sweet wormwood (Artemisia annua).
METHODEST-SSR detection was performed using Perl program MISA. Gene Ontology (GO) annotations were formatted for input into the GOSlim program and the output was parsed to count the occurrence of each GO category. Primer 3 software was used to design 18 pairs primers, amplified products were separated on a 6% denaturing polyacrylamide gel using silver staining.
RESULTBy searching with Active Perl, totally 2 110 SSRs were detected, accounting for 8.6%. The frequency of occurrence of dinucleotide and trinucleotide was 28% and 50.4%, respectively. The most common repeat motifs of trinucleotide were ACC/GGT, accounting for 9.8%. Three hundred and twelve SSR-ESTs were annotated using GO terms. The suitable PCR system of 15 pairs primers was established, and revealed microsatellite polymorphism in 36 individuals.
CONCLUSIONThere are a variety of motifs at EST-SSR locus in sweet wormwood, and more effective amplification and polymorphism in 18 pairs detected primers. Therefore, EST resource is an effective and feasible approach to develop SSR markers, and EST-SSRs will a powerful tool for studies of sweet wormwood genetic resources.
Artemisia annua ; genetics ; Expressed Sequence Tags ; Microsatellite Repeats ; Polymorphism, Genetic
2.Diversity of Artemisia argyi germplasm resources based on agronomic and leaf phenotypic traits.
Chang-Jie CHEN ; Dan-Dan LUO ; Yu-Huan MIAO ; Lan-Ping GUO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2021;46(11):2773-2782
In this study, in order to evaluate the phenotypic diversity of Artemisia argyi germplasm resources and improve its efficiency of cultivation and breeding, 100 accessions of A. argyi germplasm resources from 58 regions in China were collected, 20 agronomic traits and leaf phenotypic traits were observed and described. The data were used for phenotypic diversity analysis, correlation analysis, principal component analysis and cluster analysis. The result showed that the genetic diversity index of 20 traits ranged from 0.82 to 4.37, among which the largest was the base depth and the smallest was the leaf width; the coefficient of variation of the 12 quantitative traits ranged from 10.55% to 41.47%. the highest coefficient of variation was the height of dead leaves, and the smallest was the content of chlorophyll, except for the angle of branches, all the quantitative characters tended to be normal distribution. The correlation analysis showed that 28 pairs of traits had significant correlation(P<0.01), and 13 pairs had significant correlation(P<0.05). According to principal component analysis, 20 traits were simplified into 9 principal components, and the cumulative contribution rate was 73.414%, nine traits including plant height, dead leaves heigh, stem diameter, symmetry of leave base, stipule, leaf tip shape, depth of the first pair of lobes, depth of the second pair of lobes and leaf yield were selected as key indexes for evaluating agronomic traits and leaf phenotypic traits of A.argyi germplasm resources. With cluster analysis, 100 accessions of A.argyi were classified into 3 groups, the groupⅠincluded the dwarf plants with thick stem and large leaf, the groupⅡincluded high plants with wide leaf and high yield, the group Ⅲ included dwarf plants with thin stem and flat bottom shape of leaf, which could provide the basis for cultivation identification and variety breeding of A.argyi germplasm resources.
Artemisia
;
China
;
Phenotype
;
Plant Breeding
;
Plant Leaves/genetics*
3.Content of mineral elements in different Artemisia argyi germplasms and their relationship with quality properties.
Chang-Jie CHEN ; Yu-Huan MIAO ; Yan FANG ; Lan-Ping GUO ; Yuan ZENG ; Da-Hui LIU
China Journal of Chinese Materia Medica 2022;47(4):880-888
To clarify the content characteristics of mineral elements in different Artemisia argyi germplasm resources and their relationship with the quality properties of Artemisiae Argyi Folium, this study measured the content of 10 mineral elements including nitrogen(N), phosphorus(P), potassium(K), calcium(Ca), magnesium(Mg), aluminum(Al), manganese(Mn), iron(Fe), copper(Cu), and zinc(Zn) in 100 Artemisia argyi germplasm samples. Besides, their relationship with the quality properties of Artemisiae Argyi Folium was explored by correlation analysis, path analysis, and cluster analysis. The results demonstrated that the variation coefficient of the 10 mineral elements in Artemisiae Argyi Folium ranged from 12.23% to 64.38%, and the genetic diversity index from 0.97 to 3.09. The genetic diversities of N, P, and Zn were obvious. As revealed by the correlation analysis, N, P, and K showed strong positive correlations with each other. Except that Mg and Al were negatively correlated, Ca, Mg, Al, Mn, Fe, Cu, and Zn were positively correlated. The correlation analysis of mineral elements with the quality properties of Artemisiae Argyi Folium proved the significant correlations of 17 pairs of characters. According to the path analysis, P, K, Ca, and Mn greatly affected the yield of Artemisiae Argyi Folium, P, K, and Mg the output rate of moxa, N, P, and K the content of total volatile oil, P and K the content of eucalyptol, and P, K, and Ca the content of eupatilin. The 100 germplasm samples were clustered into three groups. Specifically, in cluster Ⅰ, the enrichment capacity of P, K, and Mg elements was strong, and the comprehensive properties of mineral elements were better, implying good development potential. Ca, Mn, Fe, and Zn elements in cluster Ⅱ and N and Al in cluster Ⅲ displayed strong enrichment capacities. This study has provided new ideas for resource evaluation and variety breeding of A. argyi and also reference for fertilizer application.
Artemisia/genetics*
;
Iron
;
Minerals/analysis*
;
Plant Breeding
;
Plant Leaves/chemistry*
4.Chloroplast genome structure characteristics and phylogenetic analysis of Artemisia indica.
Zhao-Hui LAN ; Xu-Fang TIAN ; Yu-Hua SHI ; Ran-Ran GAO ; Qing-Gang YIN ; Li XIANG ; Lan WU
China Journal of Chinese Materia Medica 2022;47(22):6058-6065
Artemisia indica is an important medicinal plant in the Asteraceae family, but its molecular genetic information has been rarely reported. In this study, the chloroplast genome of A. indica was sequenced, assembled, and annotated by the high-throughput sequencing technology, and its sequence characteristics, repeat sequences, codon usage bias, and phylogeny were analyzed. The results showed that the length of the chloroplast genome for A. indica was 151 161 bp, which was a typical circular four-segment structure, including two inverted repeat regions(IRs), a large single-copy(LSC) region, and a small single-copy(SSC) region, with a GC content of 37.47%. A total of 132 genes were annotated, and 114 were obtained after de-duplication, including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Fifty long repeat sequences and 191 SSRs were detected in the chloroplast genome of A. indica, and SSRs were mainly single nucleotides. Codon usage bias analysis showed that leucine was the most frequently used amino acid(10.77%) in the chloroplast genome, and there were 30 codons with relative synonymous codon usage(RSCU)>1 and all ended with A/U. The phylogenetic tree constructed based on the chloroplast genomes of the 19 species from the Asteraceae family showed that A. indica and A. argyi were closest in the genetic relationship, and Artemisia species clustered into separate evolutionary branches. The results of this study are expected to provide a theoretical basis for the genetic diversity and resource conservation of Artemisia medicinal plants.
Genome, Chloroplast
;
Phylogeny
;
Artemisia/genetics*
;
Codon/genetics*
;
Base Composition
;
Plants, Medicinal/genetics*
5.Relative expression of genes involved in artemisinin biosynthesis and artemisinin accumulation in different tissues of Artemisia annua.
Lien XIANG ; Zhenghui YAN ; Guijun WANG ; Wanhong LIU ; Kexuan TANG ; Zhihua LIAO
China Journal of Chinese Materia Medica 2012;37(9):1169-1173
OBJECTIVETo study the relative expression of the genes involved in artemisinin biosynthesis in different tissues including roots, stems, leaves and flowers of Artemisia annua, and establish the relationship between gene expression and artemisinin accumulation, eventually leading to discover the mainly effective genes involved in artemisinin biosynthesis.
METHODThe 7 functional genes involved in artemisinin biosynthesis were detected at the level of expression by using qRT-PCR, and simultaneously the content of artemisinin in the 4 investigated tissues was detected in parallel.
RESULTThe 3 genes including HMGR, DXR and FPS which were involved in the upstream pathway of artemisinin biosynthesis showed the highest expression levels in flowers, and the 4 functional genes including ADS, CYP71AV1, CPR and AAR which were involved in the artemisinin-specific biosynthetic pathway were found to be expressed in all the 4 detected tissues. The highest expression level of ADS was found in leaves, then followed by flowers, and the lowest expression level of ADS was found in roots and stems. CYP71AV1 had highest expression level in flowers and lowest in leaves. CPR showed highest expression level in flowers, and AAR had lower expression levels in the other 3 artemisinin-specific pathway genes in all the tissues. The highest content of artemisinin was found in leaves (0.343 mg x g(-1)), then followed by flowers (0.152 mg x g(-1)), roots (0.062 mg x g(-1)) and stems (0.060 mg x g(-1)).
CONCLUSIONIn the biosynthesis of artemisinin, the upstream genes including HMGR from the MVA pathway, DXR from the MEP pathway and the checkpoint gene FPS were much more active in flowers, and this suggested that flowers might be the tissues of artemisinin precursor biosynthesis, and further DXR contributed more to artemisinin biosynthesis. The positive correlation of ADS expression and artemisinin content in tissues demonstrated that ADS played a very important role in artemisinin biosynthesis, which was the ideal target for engineering the artemisinin biosynthetic pathway. In summary, the functional genes involved in artemisinin biosynthesis do not express at the same level but synergistically.
Artemisia annua ; chemistry ; genetics ; metabolism ; Artemisinins ; metabolism ; Plant Proteins ; genetics ; metabolism ; Polymerase Chain Reaction
6.Breeding of new Artemisia annua variety "Kehao No.1".
Yan LIANG ; Xiang ZHOU ; Jian-Zao GUO ; Mei ZHANG ; Hong-Ge JIANG ; Chen-Qing FU ; Yun-Xing FU ; Zi-Wei SHI ; Yu LIU ; Zhi-Jun XIN ; Xi-Hong LU ; Jian-Ping LIANG ; Bao-Cheng HAO ; Xue-Hu LI ; Zhen WANG
China Journal of Chinese Materia Medica 2019;44(24):5363-5367
As a natural plant source of artemisinin,a first-line drug against malaria,Artemisia annua directly affects the extraction process of artemisinin and the source of artemisinin. At present,traditional breeding methods combined with tissue culture are often used to breed high-yield artemisinin-containing new varieties of A. annua. However,the breeding method has the disadvantages of low efficiency and continuous selection. In this study,heavy ion beam irradiation technology was used to observe the specific germplasm resources of A. annua,and the morphological characteristics,agronomic traits and artemisinin content were used as indicators to observe the selection materials and materials. The cultivated new varieties were compared with trials and regional trials. In addition,the new variety of A. annua was identified by SRAP molecular marker technology. The results showed that the new variety of A. annua, " Kehao No.1",had an average yield of 235. 0 kg of dry leaf per mu,which was more than 20% higher than that of the control. Especially,the average artemisinin content was 2. 0%,which was 45% higher than that of the control,and the " Kehao No.1" has high anti-white powder disease,high-yield and high-quality new varieties. Therefore,mutagenic breeding of heavy ion beam irradiation can significantly improve the yield and artemisinin content of the " Kehao No. 1" and it has a good promotion value.
Artemisia annua/genetics*
;
Artemisinins/analysis*
;
Heavy Ions
;
Mutagenesis
;
Phenotype
;
Plant Breeding
;
Plants, Medicinal/genetics*
7.Distinguishing between Artemisia stolonifera and A. argyi by specific PCR of leaves and non-glandular trichomes.
Ya-Chen ZHAO ; Shuang-Ge LI ; Hui LI ; Yi-Mei LIU ; Ting-Ting ZHAO ; Yu-Huan MIAO ; Da-Hui LIU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2023;48(14):3730-3735
Artemisia stolonifera is a relative of A. argyi. The two species are difficult to be distinguished due to the similarity in leaf shape and have even less distinctive features after processing. This study aims to establish a method to quickly distinguish between them. At the same time, we examined the reasonability and applicability of the specific polymerase chain reaction(PCR) method. The C/T single nucleotide polymorphism was detected at the position 202 of the sequence, based on which specific primers were designed to identify these two species. The PCR with the specific primer JNC-F and the universal primer ITS3R produced a specific band at 218 bp for A. argyi and no band for A. stolonifera, which can be used to detect at least 3% of A. argyi samples mixed in A. stolonifera samples. The PCR with the specific primer KY-F and the universal primer ITS3R produced a specific band at 218 bp for A. stolonifera and no band for A. argyi, which can be used to detect at least 5% of A. stolonifera samples mixed with A. argyi. The limit of detection of the established method was 5 ng DNA. The established PCR method can accurately distinguish between A. stolonifera and A. argyi, which provides an experimental basis for the quality control of A. stolonifera and determines whether the herbs are adulterated.
Artemisia/genetics*
;
Trichomes
;
Polymerase Chain Reaction
;
Nucleic Acid Amplification Techniques
;
Plant Leaves/genetics*
8.Breeding and spreading of new vairety "Yu-Qing No. 1" of Artemisia annua.
Longyun LI ; Yekuan WU ; Peng MA ; Guanglin CUI ; Guoyue ZHONG ; Meisheng WANG ; Fangyi LI
China Journal of Chinese Materia Medica 2010;35(19):2516-2522
OBJECTIVETo breed and spread a new cultivar of Artemisia annua.
METHODThe excellent germplasm resources of A. annua in the main production area of Artemisia were collected, and the improved germplasm were screened, the content of artemisinin was determined, and yield per plant was measured. The systematically maternal line and seed production techniques of mass selection were applied combined with the variety test, variety regional test trials and production trials for breeding and spreading the new cultivars of artemisia.
RESULTThe popularization and experiment illustrated the production of the new species reached 3 000 kg x hm(-2), compared with wild A. annua it increased 10% -14%. The content of artemisinin reached more than 1%, increased more than 0.2%.
CONCLUSIONIt is proved that the systematically maternal line and seed production techniques of mass selection can significantly improve the quality of A. annua and it is an acceptable way to cultivate new variety. By production verification, it is practicable and high technical and economic benefits to popularize the new cultivar "Yu-Qing No. 1" of A. annua.
Antimalarials ; analysis ; pharmacology ; Artemisia annua ; chemistry ; genetics ; growth & development ; Artemisinins ; analysis ; pharmacology ; Breeding ; methods
9.Diversity and cluster analysis on agronomic traits of Artemisia annua germplasm resources in Yun-Gui plateau.
Meiquan YANG ; Dahui LIU ; Aijuan SHAO ; Hang JIN ; Xiao WANG ; Zhenghua FAN ; Luqi HUANG
China Journal of Chinese Materia Medica 2010;35(23):3097-3102
OBJECTIVETo evaluate the diversity of germplasm resources of Artemisia annua and provide the basis for improving utilization of germplasm resources, the agronomic traits of germplasm resources of A. annua were studied in Yun-Gui plateau.
METHODThe agronomic traits of 67 A. annua germplasm resources were measured by the visual observation and measurement methods. And the germplasm resources were clustered using flexible-beta method to analysis their genetic background.
RESULTThe result showed that 67 germplasm resources had a relatively wide variation on the 22 agronomic traits. Among 22 agronomic traits, the dry weight of branch had the greatest coefficient of variation, which was 53. 63, and the next were the dry weight of leaf, total plant weight, the length of pinnules and the length of leaflet, which were 42.74, 41.61, 39.54 and 39.22 respectively. The smallest coefficient of variation was the leaf corlor. Based the result of cluster analysis, these 67 germplasm resources were classed into 5 groups, and each group had its respective character. The first group showed early-maturing resources, dwarf stalk, slender rod, long bipinnata, high leaf-stem ratio and moderate leaf weight The third group showed late-maturing resources, tall and thick stalk, much-branch, bushy accessory pinna, high leaf weight and yield. The fifth group showed very late-maturing resources, strong lateral shoot, high leaf yield.
CONCLUSIONThere were significant genetic difference and diversity in the germplasm resources of A. annua. The result of cluster analysis showed that the resources of group 1, group 3 and group 5 were suitable as breeding material of A. annua.
Artemisia annua ; classification ; genetics ; growth & development ; Biodiversity ; Biomass ; China ; Cluster Analysis
10.Screening of reference genes for quantitative real-time PCR in Artemisia argyi.
Xiao-Zhe YI ; Lan WU ; Li XIANG ; Meng-Yue WANG ; Shi-Lin CHEN ; Yu-Hua SHI ; Xia LIU
China Journal of Chinese Materia Medica 2022;47(3):659-667
Artemisia Argyi Folium, a traditional Chinese medicine of important medicinal and economic value, sees increasing demand in medicinal and moxibustion product market. Screening stable and reliable reference genes for quantitative real-time PCR(qRT-PCR) is a prerequisite for the analysis of gene expression in Artemisia argyi. In this study, eight commonly used reference genes, Actin, 18s, EF-1α, GAPDH, SAND, PAL, TUA, and TUB, from the transcriptome of A. argyi, were selected as candidate genes. The expression of each gene in different tissues(roots, stems, and leaves) of A. argyi and in leaves of A. argyi after treatment with methyl jasmonate(MeJA) for different time(0, 4, 8, 12 h) was detected by qRT-PCR. Then, geNorm, NormFinder, BestKeeper, ΔCT, and RefFinder were employed to evaluate their expression stability. The results demonstrated that Actin was the most stable reference gene in different tissues and in leaves treated with MeJA, and coming in the second was SAND. Furthermore, the expression of DXS and MCT which are involved in terpenoid backbone biosynthesis was detected in different tissues and after MeJA treatment. The results showed that the expression patterns of DXS and MCT in different tissues and under MeJA treatment calculated with Actin and SAND as internal reference genes were consistent, which validated the screening results. In conclusion, Actin is the most suitable reference gene for the analysis of gene expression in different tissues of A. argyi and after MeJA treatment. This study provides valuable information for gene expression analysis in A. argyi and lays a foundation for further research on molecular mechanism of quality formation of Artemisia Argyi Folium.
Artemisia/genetics*
;
Gene Expression Profiling
;
Genes, Plant/genetics*
;
Plant Leaves/genetics*
;
Real-Time Polymerase Chain Reaction
;
Reference Standards
;
Transcriptome