1.Role of nitric oxide in iron-induced toxicity in rat hearts.
Chen YING-YING ; Xia QIANG ; Cao CHUN-MEI ; Ye ZHI-GUO ; Shen YUE-LIANG ; Wang LIN-LIN
Acta Physiologica Sinica 2002;54(4):300-306
The aim of the present study was to explore the effect of nitric oxide (NO) on iron-induced toxicity in rat hearts. Langendorff perfused rat heart and enzymatically isolated cardiomyocytes were used. It was shown that lipophilic Fe-HQ reduced the contractile amplitude, velocity and end-diastolic cell length in the cardiomyocyte, while the left ventricular developed pressure (LVDP), +/-dp/dt(max), heart rate and coronary flow showed biphasic alterations, which increased in the first 2 min and then was followed by a decline in isolated perfused rat heart; the contents of lactate dehydrogenase (LDH) and creatine kinase (CK) in the coronary effluent and the malondialdehyde (MDA) in the myocardium were increased. L-arginine (L-Arg), an NO precursor, reduced the contractile amplitude and end-diastolic cell length in the cardiomyocyte; but reversibly increased LVDP, +/-dp/dt(max), and coronary flow in isolated perfused rat heart. Pretreatment with L-Arg aggravated the Fe-HQ-induced decrease in contractile amplitude, velocity and end-diastolic cell length in the cardiomyocyte; LVDP, +/-dp/dt(max), heart rate and coronary flow were significantly reduced in the perfused heart, and the levels of LDH and CK increased in the coronary effluent. In contrast, the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) blocked the Fe-HQ induced change in contractile amplitude, velocity and end-diastolic cell length in the cardio- myocyte; it inhibited the decrease in LVDP, LVEDP and +/-dp/dt(max), and reduced the LDH and CK. Removing endothelial cells in coronary vessels attenuated the increase in LVDP and +/-dp/dt(max) at the beginning of Fe-HQ perfusion. It is suggested that L-Arg aggravates the iron-induced cardiac dysfunction, NO can mediate the iron-induced toxicity in heart, and endothelial cells in coronary vessels play an important role in the early stage of the effect of iron.
Animals
;
Arginine
;
pharmacology
;
Coronary Vessels
;
cytology
;
Creatine Kinase
;
metabolism
;
Endothelial Cells
;
drug effects
;
Heart
;
drug effects
;
Iron
;
toxicity
;
L-Lactate Dehydrogenase
;
metabolism
;
Malondialdehyde
;
metabolism
;
Myocardium
;
metabolism
;
Myocytes, Cardiac
;
cytology
;
NG-Nitroarginine Methyl Ester
;
pharmacology
;
Nitric Oxide
;
metabolism
;
Rats
2.Effects of Caulis Sinomenii and sinomenine on morphine-induced place preference and brain histamine level in mice.
Zhi-xian MO ; Sheng-li AN ; Ji-yin ZHOU
Journal of Southern Medical University 2006;26(12):1709-1713
OBJECTIVETo evaluate the effects of Caulis Sinomenii and sinomenine on conditioned place preference (CPP) induced by morphine and brain histamine level in mice.
METHODSSixty mice were randomized into 6 equal groups and morphine (Mor) was injected subcutaneously (9 mg/kg) for 6 consecutive days to induce CPP using a shuttle box. Since the 4th day of training, the mice in 5 of the groups were treated for 3 consecutive days with Caulis Sinomenii (10 g/kg), sinomenine (60 mg/kg), diphenhydramine (30 mg/kg), CP48/80 (5 mg/kg) and L-histidine (750 mg/kg) in addition to morphine (9 mg/kg) treatment, respectively, leaving the other group with exclusive morphine treatment. Another 10 mice received saline injection to serve as saline control group. The content of histamine (HA) in the mouse brain was measured by fluorospectrophotometry.
RESULTSIn morphine group, the mice showed significantly extended stay in morphine-paired compartment whose HA content in the brain was markedly increased (P<0.01). Treatment with Caulis Sinomenii and sinomenine resulted in significantly reduced time of stay in morphine-paired compartment and brain HA level (P<0.01).
CONCLUSIONCPP induced by morphine in mice is associated with increased HA level in the brain. Caulis Sinomenii and sinomenine can suppress the acquisition of place preference induced by morphine and modulate HA level in the central nervous system in morphine-dependent mice.
Animals ; Arginine ; pharmacology ; Brain ; drug effects ; metabolism ; Conditioning, Operant ; drug effects ; physiology ; Diphenhydramine ; pharmacology ; Histamine ; metabolism ; Male ; Mice ; Morphinans ; pharmacology ; Morphine ; toxicity ; Morphine Dependence ; etiology ; physiopathology ; Motor Activity ; drug effects ; Random Allocation ; Sinomenium ; chemistry
3.The Protective Effects of Green Tea Extract against L-arginine Toxicity to Cultured Human Mesangial Cells.
Byung Chul SHIN ; Hyun Ho RYU ; Jong Hoon CHUNG ; Byoung Rai LEE ; Hyun Lee KIM
Journal of Korean Medical Science 2009;24(Suppl 1):S204-S209
The aim of this study was to investigate whether green tea extract (GTE) has the protective effects on excess L-arginine induced toxicity in human mesangial cell. Human mesangial cells treated with L-arginine were cultured on Dulbecco's modified eagle medium in the presence and absence of inducible nitric oxide synthase (iNOS) inhibitor and GTE. The cell proliferation was determined by 3 (4,5-dimethylthiazol- 2-yl)-2, 5-diphengltetrqzolium bromide, a tetrazole assay. The iNOS mRNA and its protein expression were detected by reverse transcription polymerase chain reaction and Western blot, respectively. The concentration of nitric oxide (NO) was measured by NO enzyme-linced immuno sorbent assay kit. L-arginine significantly inhibited the proliferation of human mesangial cells, and induced the secretion of NO to the media. NO production by L-arginine was significantly suppressed by GTE and iNOS inhibitor (p<0.01). The expression level of iNOS mRNA and its protein that was significantly increased by L-arginine was decreased by iNOS inhibitor but not by GTE. GTE protected the mesangial cells from the NO-mediated cytotoxicity by scavenging the NO rather than by iNOS gene expression. Therefore, we conclude that GTE has some protective effect for renal cells against oxidative injury possibly by polyphenols contained in GTE.
Antioxidants/metabolism
;
Arginine/metabolism/pharmacology/*toxicity
;
Cell Line
;
Cell Proliferation
;
Cell Survival
;
Flavonoids/metabolism
;
Glomerular Mesangium/cytology/metabolism
;
Humans
;
Mesangial Cells/*cytology/metabolism
;
Nitric Oxide/chemistry/metabolism
;
Nitric Oxide Synthase Type II/metabolism
;
Phenols/metabolism
;
RNA, Messenger/metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tea