1.Research progress in strigolactones and application prospect in medicinal plants.
Yi-Ying CAO ; Yu-Chao CHEN ; Sheng-Hu GUO ; Xiao-Yan GAN ; Li TIAN ; Lu-Qi HUANG ; Yuan YUAN
China Journal of Chinese Materia Medica 2023;48(12):3132-3139
Strigolactones(SLs) are a class of sesquiterpenoids derived from the carotenoid biosynthesis pathway with the core carbon skeleton consisting of tricyclic lactone(ABC tricyclic ring) and α,β-unsaturated furan ring(D ring). SLs are widely distributed in higher plants and are symbiotic signals between plants and Arbuscular mycorrhiza(AM), which play key roles in the evolution of plant colonizing terrestrial habitats. As a new type of plant hormone, SLs possess such important biological functions as inhibiting shoot branching(tillers), regulating root architecture, promoting secondary growth, and improving plant stress resistance. Therefore, SLs have attracted wide attention. The biological functions of SLs are not only closely related to the formation of "excellent shape and quality" of Chinese medicinal materials but also have important practical significance for the production of high-quality medicinal materials. However, SLs have been currently widely studied in model plants and crops such as Oryza sativa and Arabidopsis thaliana, and few related studies have been reported on SLs in medicinal plants, which need to be strengthened. This review focused on the latest research progress in the isolation and identification, biological and artificial synthesis pathways, biosynthesis sites and transport modes, signal transduction pathways and mechanisms, and biological functions of SLs, and prospected the research on the regulation mechanism of SLs in the growth and development of medicinal plants and their related application on targeted regulation of Chinese herbal medicine production, which is expected to provide some references for the in-depth research on SLs in the field of Chinese medicinal resources.
Arabidopsis
;
Lactones
;
Plants, Medicinal
2.Progress in endosomal Na⁺,K⁺/H⁺ antiporter in Arabidopsis thaliana.
Chinese Journal of Biotechnology 2019;35(8):1424-1432
Important progress has been made in the interpretation of subcellular location, ion transport characteristics and biological functions of endosomal Na⁺,K⁺/H⁺ antiporter in Arabidopsis thaliana. The endosomal Na⁺,K⁺/H⁺ antiporter contain two members, AtNHX5 and AtNHX6, whose amino acid sequence similarity is 78.7%. Studies have shown that AtNHX5 and AtNHX6 are functionally redundant, and they are all located in Golgi, trans-Golgi network (TGN), endoplasmic reticulum (ER) and prevacuolar compartment (PVC). AtNHX5 and AtNHX6 are critical for salt tolerance stress and the homeostasis of pH and K⁺. It has been reported that there are conservative acidic amino acid residues that can regulate their ion activity in the endosomal NHXs transmembrane domain, which plays a decisive role in their own functions. The results of the latest research indicate that endosomal NHXs affect vacuolar transport and protein storage, and participate in the growth of auxin-mediated development in A. thaliana. In this paper, the progress of subcellular localization, ion transport, function and application of endosomal NHXs in A. thaliana was summarized.
Arabidopsis
;
Arabidopsis Proteins
;
Endosomes
;
Sodium-Hydrogen Exchangers
;
Vacuoles
3.Mechanisms of alternative splicing in regulating plant flowering: a review.
Huanhuan LU ; Qinlin DENG ; Mengdan WU ; Zhimin WANG ; Dayong WEI ; Hebing WANG ; Huafeng XIANG ; Hongcheng ZHANG ; Qinglin TANG
Chinese Journal of Biotechnology 2021;37(9):2991-3004
Flowering is a critical transitional stage during plant growth and development, and is closely related to seed production and crop yield. The flowering transition is regulated by complex genetic networks, whereas many flowering-related genes generate multiple transcripts through alternative splicing to regulate flowering time. This paper summarizes the molecular mechanisms of alternative splicing in regulating plant flowering from several perspectives, future research directions are also envisioned.
Alternative Splicing/genetics*
;
Arabidopsis/metabolism*
;
Arabidopsis Proteins/genetics*
;
Flowers/genetics*
4.Expression and function analysis of FaCO gene in Festuca arundinacea.
Xi CHEN ; Ying CHEN ; Xiaoxia LIU ; Jianhong SHU ; Xiaoli WANG ; Degang ZHAO
Chinese Journal of Biotechnology 2021;37(4):1324-1333
Photoperiod plays an important role in transformation from vegetative growth to reproductive growth in plants. CONSTANS (CO), as a unique gene in the photoperiod pathway, responds to changes of day length to initiate flowering in the plant. In this study, the expression level of FaCONSTANS (FaCO) gene under long-day, short-day, continuous light and continuous darkness conditions was analyzed by real-time quantitative PCR. We constructed the over-expression vector p1300-FaCO and infected into Arabidopsis thaliana by Agrobacterium-mediated method. We constructed the silencing vector p1300-FaCO-RNAi and infected into Festuca arundinacea by Agrobacterium-mediated method. The expression of FaCO gene was regulated by photoperiod. The over-expression of FaCO promoted flowering in wild type of Arabidopsis thaliana under long day condition and rescued the late flowering phenotype in co-2 mutant of Arabidopsis thaliana. Silencing FaCO gene in Festuca arundinacea by RNAi showed late-flowering phenotype or always kept in the vegetative growth stage. Our understanding the function of FaCO in flowering regulation will help further understand biological function of this gene in Festuca arundinacea.
Arabidopsis/metabolism*
;
Arabidopsis Proteins/genetics*
;
Festuca/metabolism*
;
Flowers/genetics*
;
Gene Expression Regulation, Plant
;
Photoperiod
5.misMM: An Integrated Pipeline for Misassembly Detection Using Genotyping-by-Sequencing and Its Validation with BAC End Library Sequences and Gene Synteny.
Young Joon KO ; Jung Sun KIM ; Sangsoo KIM
Genomics & Informatics 2017;15(4):128-135
As next-generation sequencing technologies have advanced, enormous amounts of whole-genome sequence information in various species have been released. However, it is still difficult to assemble the whole genome precisely, due to inherent limitations of short-read sequencing technologies. In particular, the complexities of plants are incomparable to those of microorganisms or animals because of whole-genome duplications, repeat insertions, and Numt insertions, etc. In this study, we describe a new method for detecting misassembly sequence regions of Brassica rapa with genotyping-by-sequencing, followed by MadMapper clustering. The misassembly candidate regions were cross-checked with BAC clone paired-ends library sequences that have been mapped to the reference genome. The results were further verified with gene synteny relations between Brassica rapa and Arabidopsis thaliana. We conclude that this method will help detect misassembly regions and be applicable to incompletely assembled reference genomes from a variety of species.
Animals
;
Arabidopsis
;
Brassica rapa
;
Clone Cells
;
Genome
;
Methods
;
Synteny*
6.Molecular mechanisms of RPD3 family members in regulating plant development and environmental responses.
Qinlin DENG ; Huanhuan LU ; Mengdan WU ; Maolin RAN ; Zhimin WANG ; Dayong WEI ; Qinglin TANG
Chinese Journal of Biotechnology 2021;37(8):2645-2657
Lysine acetylation is one of the major post-translational modifications and plays critical roles in regulating gene expression and protein function. Histone deacetylases (HDACs) are responsible for the removal of acetyl groups from the lysines of both histone and non-histone proteins. The RPD3 family is the most widely studied HDACs. This article summarizes the regulatory mechanisms of Arabidopsis RPD3 family in several growth and development processes, which provide a reference for studying the mechanisms of RPD3 family members in regulating plant development. Moreover, this review may provide ideas and clues for exploring the functions of other members of HDACs family.
Arabidopsis/metabolism*
;
Histone Deacetylases/metabolism*
;
Histones
;
Plant Development/genetics*
7.Analysis of WRKY transcription factor family based on full-length transcriptome sequencing in Polygonatum cyrtonema.
Wei-Wei TIAN ; Zhi-Xiang YAN ; Cheng WANG ; Quan YUAN ; Hua HUA ; Li LIU ; Dong-Mei YU ; Jian-Bo WANG ; Jun-Ning ZHAO
China Journal of Chinese Materia Medica 2023;48(4):939-950
WRKY transcription factor family plays an important role in plant growth and development, secondary metabolite synthesis, and biotic and abiotic stress responses. The present study performed full-length transcriptome sequencing of Polygonatum cyrtonema by virtue of the PacBio SMRT high-throughput platform, identified the WRKY family by bioinformatics methods, and analyzed the physicochemical properties, subcellular localization, phylogeny, and conserved motifs. The results showed that 30.69 Gb nucleotide bases and 89 564 transcripts were obtained after redundancy removal. These transcripts had a mean length of 2 060 bp and an N50 value of 3 156 bp. Based on the full-length transcriptome sequencing data, 64 candidate proteins were selected from the WRKY transcription factor family, with the protein size of 92-1 027 aa, the relative molecular mass of 10 377.85-115 779.48 kDa, and the isoelectric point of 4.49-9.84. These WRKY family members were mostly located in the nucleus and belonged to the hydrophobic proteins. According to the phylogenetic analysis of WRKY family in P. cyrtonema and Arabidopsis thaliana, all WRKY family members were clustered into seven subfamilies and WRKY proteins from P. cyrtonema were distributed in different numbers in these seven subgroups. Expression pattern analysis confirmed that 40 WRKY family members had distinct expression patterns in the rhizomes of 1-and 3-year-old P. cyrtonema. Except for PcWRKY39, the expression of 39 WRKY family members was down-regulated in 3-year-old samples. In conclusion, this study provides abundant reference data for genetic research on P. cyrtonema and lays a foundation for the in-depth investigation of the biological functions of the WRKY family.
Transcription Factors
;
Polygonatum
;
Phylogeny
;
Transcriptome
;
Gene Expression Regulation
;
Arabidopsis
8.Identification and expression analysis of the YABBY gene family in strawberry.
Tingting YU ; Shurong SHEN ; Yiling XU ; Xinyu WANG ; Yao YU ; Bojun MA ; Xifeng CHEN
Chinese Journal of Biotechnology 2024;40(1):104-121
YABBY proteins are important transcription factors that regulate morphogenesis and organ development in plants. In order to study the YABBY of strawberry, bioinformatic technique were used to identify the YABBY gene families in Fragaria vesca (diploid) and Fragaria×ananassa (octoploid), and then analyze the sequence characters, phylogeny and collinearity of the family members. The RNA-seq data and the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) technique were used to assay the expression patterns of the family members. A green fluorescent protein (GFP) was fused with FvYABBYs and transiently expressed in tobacco leaf cells for the subcellular localization. As the results, six FvYABBY genes and 26 FxaYABBY genes were identified from F. vesca and F.×ananassa, respectively. The FvYABBY genes were grouped into five clades, and five family members were orthologous with AtYABBY genes of Arabidopsis. In F. vesca, all of the FvYABBYs were basically not expressed not expressed in root and receptacle, while FvYABBY1, FvYABBY2, FvYABBY5 and FvYABBY6 were highly expressed in leaf, shoot, flower and achene. In F.×ananassa, FxaYABBY1, FxaYABBY2, FxaYABBY5 and FxaYABBY6 were expressed in achene, and all FxaYABBY were poorly or not expressed in receptacle. Additionally, under the abiotic stresses of low temperature, high salt and drought, the expression of FvYABBY1, FvYABBY3, FvYABBY4 and FvYABBY6 were down-regulated, FvYABBY5 was up-regulated, and FvYABBY2 was up-regulated and then down-regulated. In tobacco leaf cells, the subcellular localization of FvYABBY proteins were in the nucleus. These results provides a foundation for the functional researches of YABBY gene in strawberry.
Fragaria/genetics*
;
Arabidopsis
;
Biological Assay
;
Cold Temperature
;
Computational Biology
9.Expression, purification and characterization of arabinose-5-phosphate isomerase from Arabidopsis thaliana.
Yaping QU ; Zhijun ZHANG ; Chaoli WANG ; Lei WANG ; Linjun WU
Chinese Journal of Biotechnology 2016;32(8):1060-1069
Arabinose-5-phosphate isomerase (KdsD) is the first key limiting enzyme in the biosynthesis of 3-deoxy-D-manno-octulosonate (KDO). KdsD gene was cloned into prokaryotic expression vector pET-HTT by seamless DNA cloning method and the amount of soluble recombinant protein was expressed in a soluble form in E. coli BL21 (DE3) after induction of Isopropyl β-D-1-thiogalactopyranoside (IPTG). The target protein was separated and purified by Ni-NTA affinity chromatography and size exclusion chromatography, and its purity was more than 85%. Size exclusion chromatography showed that KdsD protein existed in three forms: polymers, dimmers, and monomers in water solution, different from microbial KdsD enzyme with the four polymers in water solution. Further, the purified protein was identified through Western blotting and MALDI-TOF MASS technology. The results of activity assay showed that the optimum pH and temperature of AtKdsD isomerase activities were 8.0 and 37 ℃, respectively. The enzyme was activated by metal protease inhibitor EDTA (5 mmol/L) and inhibited by some metal ions at lower concentration, especially with Co²⁺ and Cd²⁺ metal ion. Furthermore, when D-arabinose-5-phosphate (A5P) was used as substrate, Km and Vmax of AtKdsD values were 0.16 mmol/L, 0.18 mmol/L·min. The affinity of AtKdsD was higher than KdsD in E. coli combined with substrate. Above results have laid a foundation for the KdsD protein structure and function for its potential industrial application.
Aldose-Ketose Isomerases
;
biosynthesis
;
Arabidopsis
;
enzymology
;
Arabidopsis Proteins
;
biosynthesis
;
Cloning, Molecular
;
Escherichia coli
;
metabolism
;
Metals
;
Pentosephosphates
;
Recombinant Proteins
;
biosynthesis
10.Subcellular localization and resistance to Gibberella fujikuroi of AtELHYPRP2 in transgenic tobacco.
Qiuxia CHAI ; Benchang LI ; Ziqin XU
Chinese Journal of Biotechnology 2014;30(3):472-484
The subcellular localization and the resistance to fungal pathogen Gibberella fujikuroi of the protein encoded by Arabidopsis AtELHYPRP2 (EARLI1-LIKE HYBRID PROLINE-RICH PROTEIN 2, AT4G12500) were investigated using transgenic tobacco plants. The coding sequence of AtELHYPRP2 was amplified from genomic DNA of Col-0 ecotype. After restriction digestion, the PCR fragment was ligated into pCAMBIA1302 to produce a fusion expression vector, pCAMBIA1302-AtELHYPRP2-GFP. Then the recombinant plasmid was introduced into Agrobacterium tumefaciens strain LBA4404 and transgenic tobacco plants were regenerated and selected via leaf disc transformation method. RT-PCR and Western blotting analyses showed that AtELHYPRP2 expressed effectively in transgenic tobacco plants. Observation under laser confocal microscopy revealed that the green fluorescence of AtELHYPRP2-GFP fusion protein could overlap with the red fluorescence came from propidium iodide staining, indicating AtELHYPRP2 is localized to cell surface. Antimicrobial experiments exhibited that the constitutive expression of AtELHYPRP2 could enhance the resistance of tobacco to fungal pathogen G. fujikuroi and the infection sites could accumulate H2O2 obviously. The basal expression levels of PR1 and the systemic expression levels of PR1 and PR5 in transgenic tobacco plants were higher than that of the wild-type plants, suggesting AtELHYPRP2 may play a role in systemic acquired resistance.
Agrobacterium tumefaciens
;
Arabidopsis
;
Arabidopsis Proteins
;
genetics
;
Disease Resistance
;
Gibberella
;
pathogenicity
;
Hydrogen Peroxide
;
Plants, Genetically Modified
;
microbiology
;
Recombinant Fusion Proteins
;
genetics
;
Tobacco
;
genetics
;
microbiology