1.Cloning and expression analysis of the laccase gene RcLAC15 from Rosa chinensis.
Qi LI ; Yifang PENG ; Qijing DONG ; Qian YANG ; Xiaoyu LIU ; Yu HAN
Chinese Journal of Biotechnology 2025;41(2):845-856
Laccases (LACs), belonging to the multicopper oxidase family, are closely associated with various biological functions including lignin synthesis and responses to biotic and abiotic stresses in plants. However, few studies have reported the laccase genes in China rose (Rosa chinensis). Prickles cause difficulties to the management and harvest of R. chinensis and have become a trait concerned in the breeding. To investigate the expression patterns of laccase genes in roses, we cloned a laccase gene from an ancient variety R. chinensis 'Old Blush' and named it RcLAC15. The expression level of RcLAC15 in prickles was significantly higher than those in roots, stems, and leaves. Fifty-eight laccase genes were identified in the genome of R. chinensis, and bioinformatics analysis revealed that RcLAC15 was a homolog of AtLAC15, predicting that RcLAC15 was a stable hydrophilic protein without transmembrane structures. The recombinant expression vector pBI121-proRcLAC15:: GUS was introduced into Arabidopsis, and GUS staining results showed that the RcLAC15 promoter specifically drove GUS gene expression at the edges of Arabidopsis leaves. In summary, RcLAC15 is a gene specifically expressed in the prickles of R. chinensis. This discovery provides a reference for exploring the biological functions of laccase genes in the prickles of R. chinensis.
Laccase/metabolism*
;
Rosa/enzymology*
;
Cloning, Molecular
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Arabidopsis/metabolism*
;
Plants, Genetically Modified/metabolism*
2.Mechanisms of SnRK1 in regulating the stress responses, growth, and development of plants.
Jingmin REN ; Guoqiang WU ; Xinmiao ZHANG ; Ming WEI
Chinese Journal of Biotechnology 2025;41(7):2579-2595
Sucrose non-fermenting 1-related protein kinase 1 (SnRK1) is one of the highly conserved Ca2+ non-dependent serine/threonine protein kinases, playing a crucial role in regulating the stress responses, growth, and development of plants. SnRK1 is a three-subunit complex, and it is involved in responding to the signaling transduction induced by low-energy/low-sugar conditions. SnRK1 responds biotic and abiotic stress conditions (such as salt, drought, low/high temperatures, and diseases) through phosphorylation of key metabolic enzymes and regulatory proteins, regulation of transcription, and interactions with other proteins. Furthermore, SnRK1 is not only involved in hormone signaling pathways mediated by abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA), but also regulates plant autophagy by inhibiting the activity of target of rapamycin (TOR). In this review, we summarized the current results of research on the discovery, structure, and classification of plant SnRK1 and its roles in the stress responses, growth, and development of plants. Furthermore, this article proposes the directions of future research. This review provides good genetic resources and a theoretical basis for the genetic improvement and biological breeding for enhancing the stress tolerance of crops.
Stress, Physiological/physiology*
;
Protein Serine-Threonine Kinases/metabolism*
;
Plant Development/genetics*
;
Signal Transduction
;
Gene Expression Regulation, Plant
;
Plant Proteins/physiology*
;
Plants/metabolism*
;
Arabidopsis Proteins/physiology*
;
Plant Growth Regulators/metabolism*
3.Cloning and functional analysis of GmMAX2b involved in disease resistance.
Jiahui FU ; Lin ZUO ; Weiqun HUANG ; Song SUN ; Liangyu GUO ; Min HU ; Peilan LU ; Shanshan LIN ; Kangjing LIANG ; Xinli SUN ; Qi JIA
Chinese Journal of Biotechnology 2025;41(7):2803-2817
The plant F-box protein more axillary growth 2 (MAX2) is a key factor in the signal transduction of strigolactones (SLs) and karrinkins (KARs). As the main component of the SKP1-CUL1-FBX (SCF) complex ubiquitin ligase E3, MAX2 is responsible for specifically recognizing the target proteins, suppressor of MAX2 1/SMAX1-like proteins (SMAX1/SMXLs), which would be degraded after ubiquitination. It can thereby regulate plant morphogenesis and stress responses. There exist homologous genes of MAX2 in the important grain and oil crop soybean (Glycine max). However, its role in plant defense responses has not been investigated yet. Here, GmMAX2b, a homologous gene of MAX2, was successfully cloned from stressed soybean. Bioinformatics analysis revealed that there were two MAX2 homologous genes, GmMAX2a and GmMAX2b, with a similarity of 96.2% in soybean. Their F-box regions were highly conserved. The sequence alignment and cluster analysis of plant MAX2 homologous proteins basically reflected the evolutionary relationship of plants and also suggested that soybean MAX2 might be a multifunctional protein. Expression analysis showed that plant pathogen infection and salicylic acid treatment induced the expression of GmMAX2b in soybean, which is consistent with that of MAX2 in Arabidopsis. Ectopic expression of GmMAX2b compensated for the susceptibility of Arabidopsis max2-2 mutant to pathogen, indicating that GmMAX2b positively regulated plant disease resistance. In addition, yeast two hybrid technology was used to explore the potential target proteins of GmMAX2b. The results showed that GmMAX2b interacted with SMXL6 and weakly interacted with SMXL2. In summary, GmMAX2b is a positive regulator in plant defense responses, and its expression is induced by pathogen infection and salicylic acid treatment. GmMAX2b might exert its effect through interaction with SMXL6 and SMXL2. This study expands the theoretical exploration of soybean disease resistant F-box and provides a scientific basis for future soybean disease resistant breeding.
Glycine max/metabolism*
;
Disease Resistance/genetics*
;
Plant Diseases/immunology*
;
Plant Proteins/genetics*
;
Cloning, Molecular
;
Gene Expression Regulation, Plant
;
F-Box Proteins/genetics*
;
Arabidopsis/genetics*
;
Phylogeny
4.BnMTP10 regulates manganese accumulation in Brassica napus.
Yuting HE ; Zongyue LI ; Jinglin WANG ; Xingyu ZHAO ; Siying CHEN ; Sihong LIU ; Tianyu GU ; Yan GAO ; Xinke TANG ; Jiashi PENG
Chinese Journal of Biotechnology 2025;41(7):2843-2854
Stresses induced by the deficiency or excess of trace mineral elements, such as manganese (Mn), represent a common limiting factor for the production of crops like Brassica napus. To identify key genes involved in Mn allocation in B. napus and elucidate the underlying mechanisms, a member of the metal tolerance protein (MTP) family obtained in the previous screening of cDNA library of B. napus under Mn stress was selected as the research subject. Based on the sequence information and phylogenetic analysis, it was named as BnMTP10. It belongs to the Mn-cation diffusion facilitator (CDF) subfamily. Expression of BnMTP10 in yeast significantly improved the tolerance of transformants to excessive Mn and iron (Fe) and reduced the accumulation of Mn and Fe. However, the yeast transformants exhibited no significant changes in tolerance to excess cadmium, boron, aluminum, zinc, or copper. The qRT-PCR results demonstrated that the flowers of B. napus had the highest expression of BnMTP10, followed by roots and leaves. Subcellular localization studies revealed that BnMTP10 was localized in the endoplasmic reticulum (ER). Compared with wild-type plants, transgenic Arabidopsis overexpressing BnMTP10 exhibited enhanced tolerance to excessive Mn stress but showed no significant difference under Fe stress. Correspondingly, under excessive Mn stress, the Mn content in the roots of transgenic Arabidopsis increased significantly. However, under excessive Fe stress, the Fe content in transgenic Arabidopsis did not alter significantly. According to the results, we hypothesize that BnMTP10 may alleviate excessive Mn stress in plants by mediating Mn transport to the ER. This study facilitated our understanding of efficient mineral nutrients, and provided theoretical foundations and gene resources for breeding B. napus.
Brassica napus/genetics*
;
Manganese/metabolism*
;
Plants, Genetically Modified/genetics*
;
Plant Proteins/physiology*
;
Arabidopsis/metabolism*
;
Gene Expression Regulation, Plant
;
Phylogeny
;
Cation Transport Proteins/metabolism*
;
Stress, Physiological
5.N-terminal domain of Rep encoded by beet severe curly top virus mediates suppression of RNA silencing and induces VIM5 expression.
Jingyu XU ; Jianxin LU ; Zhenyu YU ; Meijie HU ; Chengkai GUO ; Zhongqi QIU ; Zhongqi CHEN
Chinese Journal of Biotechnology 2025;41(10):3956-3968
Geminiviruses cause substantial crop yield losses worldwide. The replication initiator protein (Rep) encoded by geminiviruses is indispensable for geminiviral replication. The Rep protein encoded by beet severe curly top virus (BSCTV, genus Curtovirus, family Geminiviridae) induces VARIANT IN METHYLATION 5 (VIM5) expression in Arabidopsis leaves upon BSCTV infection. VIM5 functions as a ubiquitination-related E3 ligase to promote the proteasomal degradation of methyltransferases, resulting in reduction of methylation levels in the BSCTV C2-3 promoter. However, the specific domains of Rep responsible for VIM5 induction remain poorly characterized. Although Rep proteins from several geminiviruses act as viral suppressors of RNA silencing (VSRs), whether BSCTV Rep also possesses VSR activity remains to be illustrated. In this study, we employed a transient expression system in the 16c-GFP transgenic and the wild-type Nicotiana benthamiana plants to analyze the VSR and the VIM5-inducing activities of different truncated Rep proteins haboring distinct domains. We found that the N-terminal domain (amino acids 1-180) of Rep suppressed GFP silencing in 16c-GFP transgenic N. benthamiana leaves. The minimal N-terminal fragment (amino acids 1-104) induced VIM5 expression upon co-infiltration, while C-terminal truncations lacked VIM5-inducing activity. Our results indicate that the N-terminal domain of Rep encoded by BSCTV mediates the suppression of RNA silencing and induces VIM5 expression. Thus, our findings contribute to a better understanding of interactions between geminiviral Rep and plant hosts.
Geminiviridae/genetics*
;
Nicotiana/metabolism*
;
Arabidopsis/metabolism*
;
RNA Interference
;
Viral Proteins/metabolism*
;
Arabidopsis Proteins/metabolism*
;
Plants, Genetically Modified/metabolism*
;
Protein Domains
;
Plant Diseases/virology*
;
Methyltransferases/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
DNA Helicases/genetics*
6.Identification and expression analysis of the YABBY gene family in strawberry.
Tingting YU ; Shurong SHEN ; Yiling XU ; Xinyu WANG ; Yao YU ; Bojun MA ; Xifeng CHEN
Chinese Journal of Biotechnology 2024;40(1):104-121
YABBY proteins are important transcription factors that regulate morphogenesis and organ development in plants. In order to study the YABBY of strawberry, bioinformatic technique were used to identify the YABBY gene families in Fragaria vesca (diploid) and Fragaria×ananassa (octoploid), and then analyze the sequence characters, phylogeny and collinearity of the family members. The RNA-seq data and the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) technique were used to assay the expression patterns of the family members. A green fluorescent protein (GFP) was fused with FvYABBYs and transiently expressed in tobacco leaf cells for the subcellular localization. As the results, six FvYABBY genes and 26 FxaYABBY genes were identified from F. vesca and F.×ananassa, respectively. The FvYABBY genes were grouped into five clades, and five family members were orthologous with AtYABBY genes of Arabidopsis. In F. vesca, all of the FvYABBYs were basically not expressed not expressed in root and receptacle, while FvYABBY1, FvYABBY2, FvYABBY5 and FvYABBY6 were highly expressed in leaf, shoot, flower and achene. In F.×ananassa, FxaYABBY1, FxaYABBY2, FxaYABBY5 and FxaYABBY6 were expressed in achene, and all FxaYABBY were poorly or not expressed in receptacle. Additionally, under the abiotic stresses of low temperature, high salt and drought, the expression of FvYABBY1, FvYABBY3, FvYABBY4 and FvYABBY6 were down-regulated, FvYABBY5 was up-regulated, and FvYABBY2 was up-regulated and then down-regulated. In tobacco leaf cells, the subcellular localization of FvYABBY proteins were in the nucleus. These results provides a foundation for the functional researches of YABBY gene in strawberry.
Fragaria/genetics*
;
Arabidopsis
;
Biological Assay
;
Cold Temperature
;
Computational Biology
7.Identification and expression analysis of TCP family members in tobacco (Nicotiana tabacum L.).
Shize WANG ; Yun LI ; Yucui HAN ; Shizhou YU ; Shuang WANG ; Yong LIU ; Xiaohu LIN
Chinese Journal of Biotechnology 2024;40(1):226-238
TCP family as plant specific transcription factor, plays an important role in different aspects of plant development. In order to screen TCP family members in tobacco, the homologous sequences of tobacco and Arabidopsis TCP family were identified by genome-wide homologous alignment. The physicochemical properties, phylogenetic relationships and cis-acting elements were analyzed by bioinformatics. The homologous genes of AtTCP3/AtTCP4 were screened, and RT-qPCR was used to detect the changes of gene expression upon 20% PEG6000 treatment. The results show that tobacco contains 63 TCP family members. Their amino acid sequence length ranged from 89 aa to 596 aa, and their protein hydropathicity grand average of hydropathicity (GRAVY) ranged from -1.147 to 0.125. The isoelectric point (pI) ranges from 4.42 to 9.94, the number of introns is 0 to 3, and the subcellular location is all located in the nucleus. The results of conserved domain and phylogenetic relationship analysis showed that the tobacco TCP family can be divided into PCF, CIN and CYC/TB1 subfamilies, and each subfamily has a stable sequence. The results of cis-acting elements in gene promoter region showed that TCP family genes contain low docile acting elements (LTR) and a variety of stress and metabolic regulation related elements (MYB, MYC). Analysis of gene expression patterns showed that AtTCP3/AtTCP4 homologous genes (NtTCP6, NtTCP28, NtTCP30, NtTCP33, NtTCP42, NtTCP57, NtTCP63) accounted for 20% PEG6000 treatment significantly up-regulated/down-regulated expression, and NtTCP30 and NtTCP57 genes were selected as candidate genes in response to drought. The results of this study analyzed the TCP family in the tobacco genome and provided candidate genes for the study of drought-resistance gene function and variety breeding in tobacco.
Nicotiana/genetics*
;
Phylogeny
;
Plant Breeding
;
Amino Acid Sequence
;
Arabidopsis
;
Polyethylene Glycols
8.Cloning and functional analysis of flavanone 3-hydroxylase gene in Rhododendron hybridum Hort.
Baoxin JIANG ; Zehang WU ; Guoxia YANG ; Sijia LÜ ; Yonghong JIA ; Yueyan WU ; Ruoyi ZHOU ; Xiaohong XIE
Chinese Journal of Biotechnology 2023;39(2):653-669
Flavanone 3-hydroxylase (F3H) is a key enzyme in the synthesis of phycocyanidins. In this experiment, the petals of red Rhododendron hybridum Hort. at different developmental stages were used as experimental materials. The R. hybridum flavanone 3-hydroxylase (RhF3H) gene was cloned using reverse transcription PCR (RT-PCR) and rapid-amplification of cDNA ends (RACE) techniques, and bioinformatics analyses were performed. Petal RhF3H gene expression at different developmental stages were analyzed by using quantitative real-time polymerase chain reaction (qRT-PCR). A pET-28a-RhF3H prokaryotic expression vector was constructed for the preparation and purification of RhF3H protein. A pCAMBIA1302-RhF3H overexpression vector was constructed for genetic transformation in Arabidopsis thaliana by Agrobacterium-mediated method. The results showed that the R. hybridum Hort. RhF3H gene is 1 245 bp long, with an open reading frame of 1 092 bp, encoding 363 amino acids. It contains a Fe2+ binding motif and a 2-ketoglutarate binding motif of the dioxygenase superfamily. Phylogenetic analysis showed that the R. hybridum RhF3H protein is most closely related to the Vaccinium corymbosum F3H protein. qRT-PCR analysis showed that the expression level of the red R. hybridum RhF3H gene tended to increase and then decrease in the petals at different developmental stages, with the highest expression at middle opening stage. The results of the prokaryotic expression showed that the size of the induced protein of the constructed prokaryotic expression vector pET-28a-RhF3H was about 40 kDa, which was similar to the theoretical value. Transgenic RhF3H Arabidopsis thaliana plants were successfully obtained, and PCR identification and β-glucuronidase (GUS) staining demonstrated that the RhF3H gene was integrated into the genome of A. thaliana plants. qRT-PCR, total flavonoid and anthocyanin contentanalysis showed that RhF3H was significantly higher expressed in the transgenic A. thaliana relative to that of the wild type, and its total flavonoid and anthocyanin content were significantly increased. This study provides a theoretical basis for investigating the function of RhF3H gene, as well as for studying the molecular mechanism of flower color in R. simsiib Planch.
Arabidopsis/metabolism*
;
Rhododendron/metabolism*
;
Amino Acid Sequence
;
Anthocyanins/metabolism*
;
Phylogeny
;
Flavonoids/metabolism*
;
Cloning, Molecular
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
9.Genome-wide identification of SUN gene family in Fragaria vesca and stresses-response analysis.
Yao YU ; Ziyao WANG ; Yiling XU ; Bojun MA ; Xifeng CHEN
Chinese Journal of Biotechnology 2023;39(2):724-740
SUN gene is a group of key genes regulating plant growth and development. Here, SUN gene families of strawberry were identified from the genome of the diploid Fragaria vesca, and their physicochemical properties, genes structure, evolution and genes expression were also analyzed. Our results showed that there were thirty-one FvSUN genes in F. vesca and the FvSUNs encoded proteins were classified into seven groups, and the members in the same group showed high similarity in gene structures and conservative motifs. The electronic subcellular localization of FvSUNs was mainly in the nucleus. Collinearity analysis showed that the members of FvSUN gene family were mainly expanded by segmental duplication in F. vesca, and Arabidopsis and F. vesca shared twenty-three pairs of orthologous SUN genes. According to the expression pattern in different tissues shown by the transcriptome data of F. vesca, the FvSUNs gene can be divided into three types: (1) expressed in nearly all tissues, (2) hardly expressed in any tissues, and (3) expressed in special tissues. The gene expression pattern of FvSUNs was further verified by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the seedlings of F. vesca were treated by different abiotic stresses, and the expression level of 31 FvSUNs genes were assayed by qRT-PCR. The expression of most of the tested genes was induced by cold, high salt or drought stress. Our studies may facilitate revealing the biological function and molecular mechanism of SUN genes in strawberry.
Fragaria/metabolism*
;
Genes, Plant
;
Stress, Physiological/genetics*
;
Arabidopsis/genetics*
;
Plant Development
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
10.Analysis of WRKY transcription factor family based on full-length transcriptome sequencing in Polygonatum cyrtonema.
Wei-Wei TIAN ; Zhi-Xiang YAN ; Cheng WANG ; Quan YUAN ; Hua HUA ; Li LIU ; Dong-Mei YU ; Jian-Bo WANG ; Jun-Ning ZHAO
China Journal of Chinese Materia Medica 2023;48(4):939-950
WRKY transcription factor family plays an important role in plant growth and development, secondary metabolite synthesis, and biotic and abiotic stress responses. The present study performed full-length transcriptome sequencing of Polygonatum cyrtonema by virtue of the PacBio SMRT high-throughput platform, identified the WRKY family by bioinformatics methods, and analyzed the physicochemical properties, subcellular localization, phylogeny, and conserved motifs. The results showed that 30.69 Gb nucleotide bases and 89 564 transcripts were obtained after redundancy removal. These transcripts had a mean length of 2 060 bp and an N50 value of 3 156 bp. Based on the full-length transcriptome sequencing data, 64 candidate proteins were selected from the WRKY transcription factor family, with the protein size of 92-1 027 aa, the relative molecular mass of 10 377.85-115 779.48 kDa, and the isoelectric point of 4.49-9.84. These WRKY family members were mostly located in the nucleus and belonged to the hydrophobic proteins. According to the phylogenetic analysis of WRKY family in P. cyrtonema and Arabidopsis thaliana, all WRKY family members were clustered into seven subfamilies and WRKY proteins from P. cyrtonema were distributed in different numbers in these seven subgroups. Expression pattern analysis confirmed that 40 WRKY family members had distinct expression patterns in the rhizomes of 1-and 3-year-old P. cyrtonema. Except for PcWRKY39, the expression of 39 WRKY family members was down-regulated in 3-year-old samples. In conclusion, this study provides abundant reference data for genetic research on P. cyrtonema and lays a foundation for the in-depth investigation of the biological functions of the WRKY family.
Transcription Factors
;
Polygonatum
;
Phylogeny
;
Transcriptome
;
Gene Expression Regulation
;
Arabidopsis

Result Analysis
Print
Save
E-mail