2.Macrophage Apoptosis in Tuberculosis.
Jinhee LEE ; Michelle HARTMAN ; Hardy KORNFELD
Yonsei Medical Journal 2009;50(1):1-11
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that infects alveolar macrophages following aerosol transmission. Lung macrophages provide a critical intracellular niche that is required for Mtb to establish infection in the human host. This parasitic relationship is made possible by the capacity of Mtb to block phagosome maturation following entry into the host macrophage, creating an environment that supports bacillary replication. Apoptosis is increasingly understood to play a role in host defense against intracellular pathogens including viruses, fungi, protozoa and bacteria. In the last 15 years an understanding of the role that macrophage apoptosis plays in TB has begun to emerge. Here we review the history and current state of the art of this topic and we offer a model of the macrophage-pathogen interaction that takes into the account the complexities of programmed cell death and the relationship between various death signaling pathways and host defense in TB.
Animals
;
Apoptosis/*immunology
;
Humans
;
Macrophages/*cytology/*microbiology
;
Mycobacterium tuberculosis/*immunology
;
Tuberculosis, Pulmonary/*immunology
3.In vitro cytolysis of B-lymphoma cells mediated by an anti-CD3/anti-CD20 bispecific single-chain antibody.
Rui YU ; Shi-Chong LI ; Ben-Chuan WU ; Hong LIU ; Ling-Ling YE ; Xing-Mao LIU ; Qi-Wei WANG ; Zhao-Lie CHEN
Chinese Journal of Biotechnology 2006;22(3):384-390
After having successfully constructed and expressed the gene of the anti-CD3/anti-CD20 bispecific single-chain antibody (bscCD3 x CD20), here we analyzed its in vitro bioactivity of mediating the lysis of Ramous human B-lymphoma cells in the presence of T-enriched human peripheral blood lymphocytes (PBL). Obvious opoptosis characters were observed by Annexin V/PI(AV/PI) stained and scanning electron microscope. As evaluated by non-radioactive cytotoxity assay, the bscCD3 x CD20 showed potent bioactivity of mediating human B-lymphoma cells lysis in the presence of T-enriched human PBL. The potency of cytotoxicity depended on the ratios of effect cells to target cells (E:T) used. Further, the antibody showed a dose and time-dependent effect on mediating Ramous cells lysis. The specific lysis reached about 87.3% at an antibody concentration of 5microg/mL and E:T used at 10:1. Clear changes in apoptogenes expression profiles were detected by apoptosis gene array after Ramous cells were treated with the antibody and PBL. Among the upregulated apoptogenes, ATM and P53 showed an increase of 187 times and 15 times respectively, which suggested that ATM-p53 pathway may be the main apoptosis way of Ramous cells induced by T cells in the presence of the bscCD3 x CD20.
Antibodies, Bispecific
;
immunology
;
Antigens, CD20
;
immunology
;
Apoptosis
;
immunology
;
CD3 Complex
;
immunology
;
Humans
;
Lymphoma, B-Cell
;
immunology
;
pathology
;
T-Lymphocytes, Cytotoxic
;
immunology
;
Tumor Cells, Cultured
4.Effect of the serum panel reactive antibody on proliferation and differentiation of cord blood CD34+ cells in vitro.
Xing-ge YANG ; Jian-pei FANG ; Yan-feng WU ; Wen-jun WENG ; Hong-gui XU ; Lü-hong XU
Chinese Journal of Pediatrics 2008;46(11):831-835
OBJECTIVEThe low rate of engraftment in children with beta-thalassemia has seriously restricted the popularity of the hematopoietic stem cell transplantation (HSCT). Panel reactive antibody (PRA) has been regarded as one of the important factors for the success of kidney transplantation. Poly-transfusion before transplantation is associated with the production of PRA. Also PRA is produced in the children with beta-thalassemia major who need poly-transfusion for life. PRA might be one of factors inducing the low rate of engraftment in children with beta-thalassemia. This study focused on observing the effect of PRA on the proliferation, differentiation, apoptosis and necrosis of cord blood CD34(+) cells in vitro by incubating the cord blood CD34(+) cells with serum containing PRA.
METHODSeven samples of cord blood were collected and the HLA typing for every sample was done. Seven sera positive for PRA and seven negative sera were selected respectively. Mononuclear cells (MNCs) were obtained by Ficoll-Hypaque density gradient centrifugation. CD34(+) cells were isolated from MNCs by positive selection using an immunomagnetic separation (CD34(+) progenitor cell isolation kit and auto-MACS). The CD34(+) cells of umbilical cord blood were incubated with the serum and complement in the following groups: A (absence of serum), B (presence of PRA positive serum), C (presence of PRA positive serum and complement), D (presence of complement), and E (presence of PRA negative serum). After incubation the samples were centrifuged and the supernatant was collected for LDH detection. At the same time the CD34(+) cells were harvested for assessing the expression of Annexin V and CD95 of the CD34(+) cells by flow cytometry and also for the detection of the DNA synthesis by (3)H-TaR incorporation. Meanwhile the cells were inoculated into the methylcellulose cultural system. The proliferation and hematopoietic potential of the CD34(+) cell of cord blood by the colony formation assay were detected on the day 10.
RESULTThe concentration of LDH in group A was (20.71 +/- 2.81) U/L, which was significantly lower than that in group B (64.28 +/- 5.12) U/L and group C (84.29 +/- 4.99) U/L. The concentration of LDH in group B was significantly lower than that in group C, while there were no significant differences in the concentration of LDH among groups A, D and E (P > 0.05). The cpm in group A was (22 629 +/- 3288), which was significantly higher than that in group B (4598 +/- 2178) and group C (1626 +/- 1192). And the cpm in group B was significantly higher than that in group C. There were no significant differences in the cpm among groups A, D and E (P > 0.05). On day 10 of culture, the total colonies, granulocyte-macrophage colony forming unit (CFU-GM), mixed colony forming unit (CFU-GEMM) and erythroid burst colony forming unit (BFU-E) in group A were significantly higher than that in group B and C. The total colonies, CFU-GM and CFU-GEMM in group B were significantly higher than those in group C. No significant differences were found in the total colonies, CFU-GM, CFU-GEMM and BFU-E among groups A, D and E (P > 0.05). There were no statistically significant differences in the CD95 and Annexin V expression among all the groups (P > 0.05).
CONCLUSIONPRA could impair the membrane, decrease the DNA synthesis, and inhibit the colony formation of CD34(+) cord blood cells, which could be strengthened by the presence of the complement at the given concentration in our study. PRA had no significant influence on the apoptosis of CD34(+) cells in vitro.
Antibodies ; immunology ; Antigens, CD34 ; Apoptosis ; immunology ; Cell Differentiation ; immunology ; Cell Proliferation ; Cells, Cultured ; Child ; Fetal Blood ; cytology ; immunology ; metabolism ; Flow Cytometry ; Humans ; Quorum Sensing ; immunology ; beta-Thalassemia ; immunology
5.The effects of amniotic membrane on polymorphonuclear cells.
Shiyou ZHOU ; Jiaqi CHEN ; Jinfa FENG
Chinese Medical Journal 2003;116(5):788-790
OBJECTIVETo investigate the effects of fresh and preserved amniotic membrane on polymorphonuclear neutrophils (PMNs) so as to understand the anti-inflammatory mechanism of amniotic membrane transplantation.
METHODSConditioned medium was collected 48 hours after fresh or preserved amnions were cultured in DMEM and 5% CO(2) at 37 degrees C. Then, polymorphonuclear cells were cultured in conditioned culture or DMEM. Fluorescent microscopy with 4',6-diamidino-2-phenylindole (DAPI) staining and cytometry were performed 6, 9, 12, and 15 hours later.
RESULTSApoptotic neutrophils were found in each group at different time points. The percentage of apoptotic cells at 6, 9, 12, and 15 hours after culture in the fresh and preserved amnion groups and the control group was 17.3%, 24.4%, 29.8%, 37.1%, and 16.2%, 20.1%, 23.7%, 27.7%, and 10.2%, 13.7%, 21.1%, 26.4%, respectively (t test, P(1) < 0.01, P(2) < 0.01 and P(3) < 0.01).
CONCLUSIONAmniotic membrane can accelerate apoptosis of polymorphonuclear neutrophils, reduce inflammation, and prevent ocular surface collagen from resolution, indicating that fresh amnion might have a stronger effect than preserved amnion.
Amnion ; physiology ; Apoptosis ; Cells, Cultured ; Neutrophils ; cytology ; immunology
6.Killing cell by granzyme.
Jin-jing LIU ; Li-ping ZHU ; Wei HE
Acta Academiae Medicinae Sinicae 2002;24(4):442-444
Granzyme is an effector molecule of activated cytotoxic T cells and natural killer cells. It mainly mediates cell apoptosis. Its function could be explained by its molecular characteristics to some extent. Its cytotoxic effect is related to some other factors contributing to apoptosis induction. It deserves studying if perforin mediates entrance of granzyme into cells. As potential substrates of granzyme caspases and their substrates have been paid much attention to.
Animals
;
Apoptosis
;
Caspases
;
immunology
;
Granzymes
;
Humans
;
Killer Cells, Natural
;
immunology
;
Membrane Glycoproteins
;
immunology
;
Perforin
;
Pore Forming Cytotoxic Proteins
;
Serine Endopeptidases
;
immunology
;
T-Lymphocytes, Cytotoxic
;
immunology
7.Mitochondria and innate immunity.
Chinese Journal of Virology 2011;27(4):395-401
Animals
;
Apoptosis
;
Cells
;
cytology
;
immunology
;
metabolism
;
Humans
;
Immunity, Innate
;
Mitochondria
;
immunology
;
Signal Transduction
8.Role of NF-kappaB in hematopoietic malignancies - review.
Journal of Experimental Hematology 2008;16(4):954-959
NF-kappaB is a kind of important nuclear factors which are relative to lots of cellular activities such as activation of immunocyte, development of T and B lymphocyte, stress reaction, cell apoptosis and so on. NF-kappaB exists in almost all types of cytoplasm in the unreactive form of heterodimer or homodimer. Recent studies have shown that there is close relationship between NF-kappaB and pathogenesis of hematopoietic malignancies such as leukemia, lymphoma and multiple myeloma. In this review, the advances of studies on the role of NF-kappaB in hematopoietic malignancies were summarized, including subunits of NF-kappaB and its activity, activity of NF-kappaB and its effect on apoptosis, activity of NF-kappaB in AML cells and its mechanism, activity of NF-kappaB in ATL cells and its mechanism, activity of NF-kappaB in lymphoma and its mechanism, activity of NF-kappaB in multiple myeloma cells and its mechanism, application of NF-kappaB suppression in hematopoietic malignancies and so on.
Apoptosis
;
physiology
;
Hematologic Neoplasms
;
etiology
;
immunology
;
pathology
;
Humans
;
NF-kappa B
;
immunology
;
metabolism
10.Tumor cell lysate with low content of HMGB1 enhances immune response of dendritic cells against lung cancer in mice.
Zhongwu PAN ; Siqi LI ; Yaohui WANG ; Haijun LIU ; Lin GUI ; Bohan DONG
Journal of Southern Medical University 2023;43(6):906-914
OBJECTIVE:
To assess the effect of tumor cell lysate (TCL) with low high-mobility group B1 (HMGB1) content for enhancing immune responses of dendritic cells (DCs) against lung cancer.
METHODS:
TCLs with low HMGB1 content (LH-TCL) and normal HMGB1 content (NH-TCL) were prepared using Lewis lung cancer (LLC) cells in which HMGB1 was inhibited with 30 nmol/L glycyrrhizic acid (GA) and using LLC cells without GA treatment, respectively. Cultured mouse DCs were exposed to different doses of NH-TCL and LH-TCL, using PBS as the control. Flow cytometry was used to detect the expressions of CD11b, CD11c and CD86 and apoptosis of the stimulated DCs, and IL-12 levels in the cell cultures were detected by ELISA. Mouse spleen cells were co-cultured with the stimulated DCs, and the activation of the spleen cells was assessed by detecting CD69 expression using flow cytometry; TNF-β production in the spleen cells was detected with ELISA. The spleen cells were then co-cultured with LLC cells at the effector: target ratios of 5:1, 10:1 and 20:1 to observe the tumor cell killing. In the animal experiment, C57/BL6 mouse models bearing subcutaneous LLC xenograft received multiple injections with the stimulated DCs, and the tumor growth was observed.
RESULTS:
The content of HMGB1 in the TCL prepared using GA-treated LLC cells was significantly reduced (P < 0.01). Compared with NH-TCL, LH-TCL showed a stronger ability to reduce apoptosis (P < 0.001) and promote activation and IL- 12 production in the DCs. Compared with those with NH-TCL stimulation, the DCs stimulated with LH-TCL more effectively induced activation of splenic lymphocytes and enhanced their anti-tumor immunity (P < 0.05). In the cell co-cultures, the spleen lymphocytes activated by LH-TCL-stimulated DCs showed significantly enhanced LLC cell killing activity (P < 0.01). In the tumor-bearing mice, injections of LH-TCL-stimulated DCs effectively activated host anti-tumor immunity and inhibited the growth of the tumor xenografts (P < 0.05).
CONCLUSION
Stimulation of the DCs with LH-TCL enhances the anti-tumor immune activity of the DCs and improve the efficacy of DCbased immunotherapy for LLC in mice.
Animals
;
Humans
;
Mice
;
Apoptosis
;
Dendritic Cells/immunology*
;
Glycyrrhizic Acid/pharmacology*
;
HMGB1 Protein
;
Lung Neoplasms/immunology*