1.Efficacy and safety of various doses of hybutimibe monotherapy or in combination with atorvastatin for primary hypercholesterolemia: a multicenter, randomized, double-blind, double-dummy, parallel-controlled phase Ⅲ clinical trial.
Si Yu CAI ; Xiang GU ; Pei Jing LIU ; Rong Shan LI ; Jian Jun JIANG ; Shui Ping ZHAO ; Wei YAO ; Yi Nong JIANG ; Yue Hui YIN ; Bo YU ; Zu Yi YUAN ; Jian An WANG
Chinese Journal of Cardiology 2023;51(2):180-187
Objective:b> To evaluate the efficacy and safety of hybutimibe monotherapy or in combination with atorvastatin in the treatment of primary hypercholesterolemia. Methods:b> This was a multicenter, randomized, double-blind, double-dummy, parallel-controlled phase Ⅲ clinical trial of patients with untreated primary hypercholesterolemia from 41 centers in China between August 2015 and April 2019. Patients were randomly assigned, at a ratio of 1∶1∶1∶1∶1∶1, to the atorvastatin 10 mg group (group A), hybutimibe 20 mg group (group B), hybutimibe 20 mg plus atorvastatin 10 mg group (group C), hybutimibe 10 mg group (group D), hybutimibe 10 mg plus atorvastatin 10 mg group (group E), and placebo group (group F). After a dietary run-in period for at least 4 weeks, all patients were administered orally once a day according to their groups. The treatment period was 12 weeks after the first dose of the study drug, and efficacy and safety were evaluated at weeks 2, 4, 8, and 12. After the treatment period, patients voluntarily entered the long-term safety evaluation period and continued the assigned treatment (those in group F were randomly assigned to group B or D), with 40 weeks' observation. The primary endpoint was the percent change in low density lipoprotein cholesterol (LDL-C) from baseline at week 12. Secondary endpoints included the percent changes in high density lipoprotein cholesterol (HDL-C), triglyceride (TG), apolipoprotein B (Apo B) at week 12 and changes of the four above-mentioned lipid indicators at weeks 18, 24, 38, and 52. Safety was evaluated during the whole treatment period. Results:b> Totally, 727 patients were included in the treatment period with a mean age of (55.0±9.3) years old, including 253 males. No statistical differences were observed among the groups in demographics, comorbidities, and baseline blood lipid levels. At week 12, the percent changes in LDL-C were significantly different among groups A to F (all P<0.01). Compared to atorvastatin alone, hybutimibe combined with atorvastatin could further improve LDL-C, TG, and Apo B (all P<0.05). Furthermore, there was no significant difference in percent changes in LDL-C at week 12 between group C and group E (P=0.991 7). During the long-term evaluation period, there were intergroup statistical differences in changes of LDL-C, TG and Apo B at 18, 24, 38, and 52 weeks from baseline among the statins group (group A), hybutimibe group (groups B, D, and F), and combination group (groups C and E) (all P<0.01), with the best effect observed in the combination group. The incidence of adverse events was 64.2% in the statins group, 61.7% in the hybutimibe group, and 71.0% in the combination group during the long-term evaluation period. No treatment-related serious adverse events or adverse events leading to death occurred during the 52-week study period. Conclusions:b> Hybutimibe combined with atorvastatin showed confirmatory efficacy in patients with untreated primary hypercholesterolemia, which could further enhance the efficacy on the basis of atorvastatin monotherapy, with a good overall safety profile.
Male
;
Humans
;
Middle Aged
;
Atorvastatin/therapeutic use*
;
Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use*
;
Hypercholesterolemia/drug therapy*
;
Cholesterol, LDL/therapeutic use*
;
Anticholesteremic Agents/therapeutic use*
;
Treatment Outcome
;
Triglycerides
;
Apolipoproteins B/therapeutic use*
;
Double-Blind Method
;
Pyrroles/therapeutic use*
2.The influence of apolipoprotein B and E gene polymorphisms on the response to simvastatin therapy in patients with hyperlipidemia.
Ping YE ; Yanzhong SHANG ; Xiaoping DING
Chinese Medical Sciences Journal 2003;18(1):9-13
<b>OBJECTIVEb>To investigate the effect of apolipoprotein B (apoB) and E (apoE) genetic variations on lipid profile at baseline (before treatment), and also on the subsequent response to simvastatin therapy.
<b>METHODSb>Eighty-eight patients with hyperlipidemia were treated with simvastatin 5mg daily. The plasma levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and apo B were measured pre-treatment and at the end of the 4th, 8th and 12th post-treatment week. Polymorphisms of apoB at XbaI locus and apoE were determined by restriction fragment length polymorphism (RFLP).
<b>RESULTSb>In all patients, relative frequencies of X- allele and X+ allele were 0.943 and 0.057 for apoB gene respectively. For apoE gene the relative frequency of epsilon2 allele was determined as 0.182, epsilon3 as 0.580 and epsilon4 as 0.238. The reduction in TC level was more prominent in patients carrying X- allele than in those with X+ allele following treatment (-23. 9% vs. -13. 6%, P < 0. 05). Compared with patients carrying epsilon3 or epsilon4 allele, those with epsilon2 allele showed a significantly higher percentage in reduction of apoB level after treatment (P < 0.05).
<b>CONCLUSIONb>The relative frequency of apoB X+ allele is high in patients with hyperlipidemia, in whom the TC-lowering efficacy is decreased following treatment of simvastatin. The relative frequencies of epsilon2 and epsilon4 are also high in hyperlipidemic patients, and the epsilon2 allele is associated with reduction in apoB level during lipid-relating therapy.
Aged ; Alleles ; Apolipoproteins B ; genetics ; Apolipoproteins E ; genetics ; Cholesterol ; blood ; Cholesterol, LDL ; blood ; Female ; Gene Frequency ; Humans ; Hyperlipidemias ; blood ; drug therapy ; genetics ; Male ; Middle Aged ; Mutation ; Polymorphism, Restriction Fragment Length ; Simvastatin ; pharmacology ; therapeutic use ; Triglycerides ; blood
3.Effect of Half-dose and Standard-dose Conjugated Equine Estrogens Combined with Natural Progesterone or Dydrogesterone on Components of Metabolic Syndrome in Healthy Postmenopausal Women: A Randomized Controlled Trial.
Wei XUE ; Yan DENG ; Yan-Fang WANG ; Ai-Jun SUN
Chinese Medical Journal 2016;129(23):2773-2779
<b>BACKGROUNDb>Menopausal hormone therapy (MHT) has been proven to have beneficial effects on several components of metabolic syndrome. However, the effects vary according to different regimens, dosages, and duration of MHT. The aim of the study was to evaluate the effect of standard-dose 0.625 mg conjugated equine estrogen (CEE) and half-dose 0.3 mg CEE daily with different progestogens in a continuous sequential regimen on postmenopausal metabolic parameters in generally healthy postmenopausal women.
<b>METHODSb>A prospective, open-label, randomized controlled clinical trial was conducted between February 2014 and December 2015. Totally 123 Chinese postmenopausal women with climacteric symptoms were included in this study and were randomly assigned to three groups: Group A received CEE 0.3 mg/micronized progesterone (MP) 100 mg daily; Group B received CEE 0.625 mg/MP 100 mg daily; and Group C received CEE 0.625 mg/dydrogesterone 10 mg daily. Drugs were given in a continuous sequential pattern. The duration of treatment was 12 months. Clinical, anthropometrical, and metabolic variables were measured. Data were analyzed according to intention-to-treat analysis, using Student's t-test and analysis of variance.
<b>RESULTSb>A total of 107 participants completed the 12-month follow-up and were included in the data analysis. At 12 months of treatment, high-density lipoprotein cholesterol and apolipoprotein A significantly increased, and low-density lipoprotein cholesterol, fasting glucose, and glycosylated hemoglobin significantly decreased in Groups B and C, compared with baseline (all P < 0.05). Among the three groups, only Group C showed significantly increased triglycerides compared with baseline (1.61 ± 0.80 mmol/L vs. 1.21 ± 0.52 mmol/L, P = 0.026). Each group showed a neutral effect on total cholesterol, lipoprotein A, apolipoprotein B, and fasting insulin levels. No cardiovascular and venous thromboembolic events occurred in the three groups.
<b>CONCLUSIONSb>Among Chinese postmenopausal women, half-dose CEE was not sufficient to induce a favorable lipid and carbohydrate profile compared with standard-dose CEE. Adding natural MP may counterbalance the TG-increasing effect of CEE.
<b>TRIAL REGISTRATIONb>ClinicalTrials.gov, NCT01698164; https://clinicaltrials.gov/ct2/show/NCT01698164?term=NCT01698164&rank=1.
Apolipoproteins B ; blood ; Blood Pressure ; drug effects ; Body Composition ; drug effects ; Dydrogesterone ; administration & dosage ; therapeutic use ; Estrogens, Conjugated (USP) ; administration & dosage ; therapeutic use ; Female ; Humans ; Insulin ; blood ; Lipoprotein(a) ; blood ; Metabolic Syndrome ; blood ; drug therapy ; Middle Aged ; Postmenopause ; Progesterone ; administration & dosage ; therapeutic use ; Triglycerides ; blood
4.Effects of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination on inflammatory responses in atherosclerotic mice.
Wan-Yu LI ; Qing-Yin LONG ; Xin-Ying FU ; Lu MA ; Wei TAN ; Yan-Ling LI ; Shun-Zhou XU ; Wei ZHANG ; Chang-Qing DENG
China Journal of Chinese Materia Medica 2023;48(15):4164-4172
The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.
Mice
;
Male
;
Animals
;
NF-kappa B/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Cholesterol, LDL
;
Hyperplasia
;
Mice, Inbred C57BL
;
Atherosclerosis/genetics*
;
Apolipoproteins E/therapeutic use*
;
RNA, Messenger
5.Inhibition of proprotein convertase subtilisin/kexin type 9: a novel mechanism of berberine and 8-hydroxy dihydroberberine against hyperlipidemia.
De-liang LIU ; Li-jun XU ; Hui DONG ; Guang CHEN ; Zhao-yi HUANG ; Xin ZOU ; Kai-fu WANG ; Yun-huan LUO ; Fu-er LU
Chinese journal of integrative medicine 2015;21(2):132-138
<b>OBJECTIVEb>To investigate the effect and molecular mechanisms of different doses of 8-hydroxy dihydroberberine (Hdber) for the treatment of hyperlipidemia in rats.
<b>METHODSb>A rat model of hyperlipidemia was established by feeding rats a high-fat diet for 4 weeks in 70 rats of 80 animals, and 10 rats were randomly selected as control group. The hyperlipidemic rats were then randomly divided into the following groups: a model group (MOD); a berberine group [BBR, 156 mg/(kg day)]; Hdber groups, which were treated with different doses of Hdber [78, 39 and 19.5 mg/(kg day)]; and a simvastatin group [SIM, 4 mg/(kg day)]. The corresponding therapy was administered to the rats of each treatment via gastric tubes. Normal animals were used as a control group. The blood levels of various lipids, including total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, free fatty acid (FFA), apolipoprotein AI(Apo-AI) and apolipoprotein B (Apo-B) were examined. The protein expressions of low-density lipoprotein receptor (LDL-R), sterol regulatory element-binding protein 2 (SREBP-2), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and proprotein convertase subtilisin/kexin type 9 (PCSK-9) in liver tissues were determined by Western blot analysis.
<b>RESULTSb>Compared with the control group of rats, the model group demonstrated a deteriorated blood lipid profile and exhibited increased expression levels of PCSK-9 protein in their liver tissues (P<0.01). In addition, the high-fat diet decreased the expression levels of LDL-R, SREBP-2 and HMGCR proteins in murine liver tissues. However, the addition of berberine or Hdber reversed the blood lipid profile changes (P<0.05 or P<0.01), decreased the expression levels of PCSK-9 proteins (P<0.01), and increased the expression levels of LDL-R proteins in the hyperlipidemic rats (P<0.01). These compounds did not significantly influence the expression levels of SREBP-2 and HMGCR proteins in the hyperlipidemic rats.
<b>CONCLUSIONSb>Hdber is effective in the treatment of hyperlipidemia in rats. The therapeutic mechanisms of Hdber may be associated with increasing the expression of LDL-R protein and decreasing the expression of PCSK-9 protein in liver tissues.
Animals ; Apolipoprotein A-I ; blood ; Apolipoproteins B ; blood ; Berberine ; analogs & derivatives ; pharmacology ; therapeutic use ; Hydroxymethylglutaryl CoA Reductases ; metabolism ; Hyperlipidemias ; blood ; drug therapy ; Lipids ; blood ; Liver ; drug effects ; metabolism ; Male ; Proprotein Convertase 9 ; Rats, Wistar ; Receptors, LDL ; metabolism ; Serine Endopeptidases ; metabolism ; Sterol Regulatory Element Binding Protein 2 ; metabolism
6.The effects of an instant haw beverage on lipid levels, antioxidant enzyme and immune function in hyperlipidemia patients.
Jidi CHEN ; Bin XUE ; Keji LI ; Jingda SHI ; D KREMPIN ; M ZHU ; C GARLAND
Chinese Journal of Preventive Medicine 2002;36(3):172-175
<b>OBJECTIVEb>To determine the effectiveness of an instant haw beverage in regulating lipid disturbance, enhancing antioxidant enzyme activity and immune function.
<b>METHODSb>Data was collected from 60 hyperlipidemic subjects. In this crossover design, each subject randomly received either the instant haw beverage (100 ml corresponding to 3 g of haw powder or 30 g of fresh haw fruit plus the carrier-guar gum plus some starch) or placebo (guar gum 1.5 g plus some starch as the carrier of the beverage) twice daily. Each supplementation lasted 31 days with a 28-day washout period between treatments.
<b>RESULTSb>The instant haw beverage significantly reduced total serum cholesterol (9.6%), triglyceride (12.1%), LDLC (18%) while significantly increased SOD activities (7.5%). The placebo was shown to have positive results in some of the lipid profiles, though the effects of the instant haw beverage demonstrated greater significance. Serum triglyceride levels were significantly decreased and SOD activity significantly increased only as subjects were supplemented with the instant haw beverage while no significant changes were seen with placebo.
<b>CONCLUSIONb>Supplementation with the instant haw beverage positively affects blood lipid profile, antioxidant status and immune function in individuals with hyperlipidemia.
Adaptor Proteins, Vesicular Transport ; Adult ; Aged ; Antioxidants ; Apolipoprotein A-I ; blood ; Apolipoproteins B ; blood ; Beverages ; Cholesterol ; blood ; Cross-Over Studies ; Drugs, Chinese Herbal ; therapeutic use ; Female ; Humans ; Hyperlipidemias ; blood ; drug therapy ; Lipids ; blood ; Male ; Middle Aged ; Proteins ; analysis ; Superoxide Dismutase ; blood ; Triglycerides ; blood