1.Oral microbiome between patients with non-obstructive and obstructive hypertrophic cardiomyopathy.
Qianyi QIN ; Yuming ZHU ; Liu YANG ; Runzhi GUO ; Lei SONG ; Dong WANG ; Weiran LI
Chinese Medical Journal 2025;138(18):2308-2315
BACKGROUND:
The profile and clinical significance of the oral microbiome in patients with non-obstructive hypertrophic cardiomyopathy (noHCM) and obstructive hypertrophic cardiomyopathy (oHCM) remain unexplored. The objective of this study was to evaluate the difference of oral microbiome between noHCM and oHCM patients.
METHODS:
This cross-sectional study enrolled 18 noHCM patients and 26 oHCM patients from Fuwai Hospital, Chinese Academy of Medical Sciences between 2020 and 2021. Clinical and periodontal evaluations were conducted, and subgingival plaque samples were collected. Metagenomic sequencing and subsequent microbial composition and functional analyses were performed.
RESULTS:
Compared to oHCM patients, those with noHCM had higher systolic blood pressure (138.1 ± 18.8 mmHg vs . 124.2 ± 13.8 mmHg, P = 0.007), a larger body circumference (neck circumference: 39.2 ± 4.0 cm vs . 35.1 ± 3.7 cm, P = 0.001; waist circumference: 99.7 ± 10.5 cm vs . 92.2 ± 10.8 cm, P = 0.027; hip circumference: 102.5 ± 5.6 cm vs . 97.5 ± 9.1 cm, P = 0.030), a greater left ventricular end-diastolic diameter (46.6 ± 4.9 mm vs . 43.1 ± 4.9 mm, P = 0.026), and a lower left ventricular ejection fraction (64.1 ± 5.7 % vs . 68.5 ± 7.8%, P = 0.048). While overall biodiversity and general microbial composition were similar between the noHCM and oHCM groups, ten taxa displayed significant differences at the genus and species levels, with Porphyromonas gingivalis showing the highest abundance and greater enrichment in noHCM (relative abundance: 7.79535 vs . 4.87697, P = 0.043). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis identified ten distinct pathways, with pathways related to energy and amino acid metabolism being enriched in oHCM patients, and those associated with genetic information processing less abundant in the oHCM group. Metabolic potential analysis revealed ten significantly altered metabolites primarily associated with amino sugar and nucleotide sugar metabolism, porphyrin metabolism, pentose and glucuronate interconversion, and lysine degradation.
CONCLUSIONS
The higher abundance of Porphyromonas gingivalis , which is known to impact cardiovascular health, in noHCM patients may partially account for clinical differences between the groups. Pathway enrichment and metabolic potential analyses suggest microbial functional shifts between noHCM and oHCM patients, potentially reflecting inherent metabolic changes in HCM.
Humans
;
Cardiomyopathy, Hypertrophic/microbiology*
;
Female
;
Male
;
Microbiota/genetics*
;
Middle Aged
;
Cross-Sectional Studies
;
Adult
;
Mouth/microbiology*
;
Aged
2.Hypertrophic Cardiomyopathy: Mechanisms of Pathogenicity.
Bao Xi WANG ; Yue Ting ZHOU ; Yi Pin ZHAO ; Yong CHENG ; Jun REN ; Guan Chang TAN ; Xiao Hu WANG
Biomedical and Environmental Sciences 2025;38(8):988-1000
Hypertrophic cardiomyopathy (HCM) is a major contributor to cardiovascular diseases (CVD), the leading cause of death globally. HCM can precipitate heart failure (HF) by causing the cardiac tissue to weaken and stretch, thereby impairing its pumping efficiency. Moreover, HCM increases the risk of atrial fibrillation, which in turn elevates the likelihood of thrombus formation and stroke. Given these significant clinical ramifications, research into the etiology and pathogenesis of HCM is intensifying at multiple levels. In this review, we discuss and synthesize the latest findings on HCM pathogenesis, drawing on key experimental studies conducted both in vitro and in vivo. We also offer our insights and perspectives on these mechanisms, while highlighting the limitations of current research. Advancing fundamental research in this area is essential for developing effective therapeutic interventions and enhancing the clinical management of HCM.
Cardiomyopathy, Hypertrophic/physiopathology*
;
Humans
;
Animals
5.Multimodal ultrasound assessment of myocardial perfusion and contractile function in patients with hypertrophic cardiomyopathy and their first-degree relatives.
Li YU ; Shi ZENG ; Qichang ZHOU ; Zurong YANG ; Yiyuan HUANG
Journal of Central South University(Medical Sciences) 2024;49(12):1934-1940
OBJECTIVES:
Hypertrophic cardiomyopathy (HCM) frequently leads to myocardial ischemia and cardiac dysfunction. Even genotype-positive/phenotype-negative (G+/P-) individuals, carriers of pathogenic sarcomere gene mutations without left ventricular hypertrophy, remain at risk of progression to clinical HCM. This study aims to evaluate myocardial perfusion and contractile function in familial HCM patients and their first-degree relatives using myocardial contrast echocardiography (MCE) and velocity vector imaging (VVI), in order to identify early myocardial dysfunction and at-risk individuals within families.
METHODS:
Thirty-five genetically confirmed HCM patients with left ventricular hypertrophy were assigned to a G+/P+ group. A total of 30 first-degree relatives carrying sarcomere mutations but without echocardiographic evidence of left ventricular hypertrophy were assigned to a G+/P- group. A total of 38 age- and sex-matched gene-negative healthy family members served as controls. All participants underwent MCE and VVI assessments. Myocardial perfusion parameters, including peak intensity (PI), time to peak concentration (TP), and the ratio of declining intensity and declining time (dI/dT), as well as strain parameters including global longitudinal strain (GLS), global radial strain (GRS), and global circumferential strain (GCS) were recorded and analyzed for differences and correlations.
RESULTS:
Compared to both the G+/P- and normal control groups, the G+/P+ group had significantly lower PI, dI/dT, GLS, and GRS, along with significantly increased TP (all P<0.05). GLS and GRS were positively correlated with PI (r=0.629 and r=0.613, respectively; both P<0.01) and negatively correlated with TP (r=-0.597 and r=-0.571, respectively; both P<0.01). Compared to the normal control group, the G+/P- group showed a significant reduction in GLS (P<0.05), but no significant differences in GRS, GCS, PI, TP, or dI/dT (all P>0.05).
CONCLUSIONS
Myocardial contractile dysfunction in HCM patients is closely related to impaired perfusion. Even in the absence of wall hypertrophy, sarcomere mutation carriers show early signs of subclinical left ventricular dysfunction. MCE and VVI can quantitatively assess myocardial perfusion and function, offering valuable tools for early detection and risk stratification in HCM patients and their relatives.
Humans
;
Male
;
Female
;
Myocardial Contraction/physiology*
;
Echocardiography/methods*
;
Adult
;
Cardiomyopathy, Hypertrophic/genetics*
;
Middle Aged
;
Cardiomyopathy, Hypertrophic, Familial/genetics*
;
Family
;
Mutation
6.Integrative analysis of transcriptome, DNA methylome, and chromatin accessibility reveals candidate therapeutic targets in hypertrophic cardiomyopathy.
Junpeng GAO ; Mengya LIU ; Minjie LU ; Yuxuan ZHENG ; Yan WANG ; Jingwei YANG ; Xiaohui XUE ; Yun LIU ; Fuchou TANG ; Shuiyun WANG ; Lei SONG ; Lu WEN ; Jizheng WANG
Protein & Cell 2024;15(11):796-817
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and is characterized by primary left ventricular hypertrophy usually caused by mutations in sarcomere genes. The mechanism underlying cardiac remodeling in HCM remains incompletely understood. An investigation of HCM through integrative analysis at multi-omics levels will be helpful for treating HCM. DNA methylation and chromatin accessibility, as well as gene expression, were assessed by nucleosome occupancy and methylome sequencing (NOMe-seq) and RNA-seq, respectively, using the cardiac tissues of HCM patients. Compared with those of the controls, the transcriptome, DNA methylome, and chromatin accessibility of the HCM myocardium showed multifaceted differences. At the transcriptome level, HCM hearts returned to the fetal gene program through decreased sarcomeric and metabolic gene expression and increased extracellular matrix gene expression. In the DNA methylome, hypermethylated and hypomethylated differentially methylated regions were identified in HCM. At the chromatin accessibility level, HCM hearts showed changes in different genome elements. Several transcription factors, including SP1 and EGR1, exhibited a fetal-like pattern of binding motifs in nucleosome-depleted regions in HCM. In particular, the inhibition of SP1 or EGR1 in an HCM mouse model harboring sarcomere mutations markedly alleviated the HCM phenotype of the mutant mice and reversed fetal gene reprogramming. Overall, this study not only provides a high-precision multi-omics map of HCM heart tissue but also sheds light on the therapeutic strategy by intervening in the fetal gene reprogramming in HCM.
Cardiomyopathy, Hypertrophic/metabolism*
;
Humans
;
Animals
;
DNA Methylation
;
Mice
;
Transcriptome
;
Chromatin/genetics*
;
Early Growth Response Protein 1/metabolism*
;
Male
;
Epigenome
;
Nucleosomes/genetics*
;
Female
;
Middle Aged
;
Disease Models, Animal
;
Adult
7.Genetic analysis of a Chinese pedigree affected with Mucopolysaccharidosis type ⅢA.
Hanheng ZUO ; Yinping LI ; Yinghua CUI ; Jinguo ZHANG ; Caiyun SHEN ; Wenya ZHU ; Chunlei DU
Chinese Journal of Medical Genetics 2023;40(4):452-457
OBJECTIVE:
To explore the clinical and genetic characteristics of a patient with hypertrophic cardiomyopathy as the initial manifestation of Mucopolysaccharidosis type Ⅲ A (MPS Ⅲ A).
METHODS:
A female patient with MPS Ⅲ A who was admitted to the Affiliated Hospital of Jining Medical University in January 2022 and her family members (seven individuals from three generations) were selected as the study subjects. Clinical data of the proband were collected. Peripheral blood samples of the proband was collected and subjected to whole exome sequencing. Candidate variants were verified by Sanger sequencing. Heparan-N-sulfatase activity was determined for the disease associated with the variant site.
RESULTS:
The proband was a 49-year-old woman, for whom cardiac MRI has revealed significant thickening (up to 20 mm) of left ventricular wall and delayed gadolinium enhancement at the apical myocardium. Genetic testing revealed that she has harbored compound heterozygous variants in exon 17 of the SGSH gene, namely c.545G>A (p.Arg182His) and c.703G>A (p.Asp235Asn). Based on guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were predicted to be pathogenic (PM2_Supporting +PM3+PP1Strong+PP3+PP4; PS3+PM1+PM2_Supporting +PM3+PP3+PP4). Sanger sequencing confirmed that her mother was heterozygous for the c.545G>A (p.Arg182His) variant, whilst her father, sisters and her son were heterozygous for the c.703G>A (p.Asp235Asn) variant. Determination of blood leukocyte heparan-N-sulfatase activity suggested that the patient had a low level of 1.6 nmol/(g·h), whilst that of her father, elder and younger sisters and son were all in the normal range.
CONCLUSION
The compound heterozygous variants of the SGSH gene probably underlay the MPS ⅢA in this patient, for which hypertrophic cardiomyopathy is an associated phenotype.
Female
;
Humans
;
Cardiomyopathy, Hypertrophic
;
Contrast Media
;
East Asian People
;
Gadolinium
;
Mucopolysaccharidosis III
;
Mutation
;
Pedigree
;
Male
;
Middle Aged
8.Recent research on childhood hypertrophic cardiomyopathy caused by MYH7 gene mutations.
Kui ZHENG ; Lu LIU ; Ying-Qian ZHANG
Chinese Journal of Contemporary Pediatrics 2023;25(4):425-430
Hypertrophic cardiomyopathy (HCM) is the most common monogenic inherited myocardial disease in children, and mutations in sarcomere genes (such as MYH7 and MYBPC3) are the most common genetic etiology of HCM, among which mutations in the MYH7 gene are the most common and account for 30%-50%. MYH7 gene mutations have the characteristics of being affected by environmental factors, coexisting with multiple genetic variations, and age-dependent penetrance, which leads to different or overlapping clinical phenotypes in children, including various cardiomyopathies and skeletal myopathies. At present, the pathogenesis, course, and prognosis of HCM caused by MYH7 gene mutations in children remain unclear. This article summarizes the possible pathogenesis, clinical phenotype, and treatment of HCM caused by MYH7 gene mutations, in order to facilitate the accurate prognostic evaluation and individualized management and treatment of the children with this disorder.
Child
;
Humans
;
Cardiomyopathy, Hypertrophic/therapy*
;
Phenotype
;
Troponin T/genetics*
;
Mutation
;
Carrier Proteins/genetics*
;
Myosin Heavy Chains/genetics*
;
Cardiac Myosins/genetics*
9.Effect analysis of myectomy guided by personalized three-dimensional reconstruction and printing in the treatment of obstructive hypertrophic cardiomyopathy.
Pei Jian WEI ; Jian LIU ; Tong TAN ; Wei ZHU ; Jian ZHUANG ; Hui Ming GUO
Chinese Journal of Surgery 2023;61(1):54-60
Objective: To examine the clinical efficacy of myectomy guided by personalized three-dimensional reconstruction and printing for patients with obstructive hypertrophic cardiomyopathy. Methods: The clinical data of 28 patients with obstructive hypertrophic cardiomyopathy, who underwent septal myectomy guided by personalized three-dimensional reconstruction and printing in the Department of Cardiaovascular Surgery, Guangdong Provincial People's Hospital from May 2020 to December 2021, were retrospectively analyzed. There were 14 males and 14 females, aging (51.1±14.0) years (range: 18 to 72 years). Enhanced cardiac computed tomography images were imported into Mimics software for preoperative three-dimensional reconstruction. The direction of the short axial plane of each segment was marked perpendicularly to the interventricular septum on the long axial plane of the digital cardiac model, then the thickness was measured on each short axial plane. A figurative digital model was used to determine the extent of resection and to visualize mitral valve and papillary muscle abnormalities. Correlation between the length, width, thickness, and volume of the predicted resected myocardium and those of the surgically resected myocardium was assessed by Pearson correlation analysis or Spearman correlation analysis. The accuracy of detecting mitral valve and papillary muscle abnormalities of transthoracic echocardiography and three-dimensional reconstruction was also compared. Results: There was no death or serious complications like permanent pacemaker implantation, re-sternotomy for bleeding, low cardiac output syndrome, stroke, or multiple organ dysfunction syndromes in the whole group. Namely, the obstruction of the left ventricular outflow tract was effectively relieved. The systolic anterior motion of the anterior mitral valve leaflet was absent in all patients after myectomy. The length, width, and thickness of the predicted resected myocardium by three-dimensional reconstruction were significantly positively correlated with the length (R=0.65, 95%CI: 0.37 to 0.82, P<0.01), width (R=0.39, 95%CI: 0.02 to 0.67, P<0.01), and thickness (R=0.82, 95%CI: 0.65 to 0.92, P<0.01) of the surgically resected myocardium, while the relation of the volume of the predicted resected myocardium and the volume of the surgically resected myocardium was a strong positive correlation (R=0.88, 95%CI: 0.76 to 0.94, P<0.01). Importantly, the interventricular septal myocardial thickness measured by preoperative transthoracic echocardiography showed a moderate positive correlation with the volume of surgically resected myocardium (R=0.52, 95%CI: 0.19 to 0.75, P<0.01). During a follow-up of (14.4±6.8) months (range: 3 to 22 months), no death occurred, and 1 patient was readmitted for endocardial radiofrequency ablation due to atrial fibrillation. Conclusion: Personalized three-dimensional reconstruction and printing can not only visualize the intracardiac structure but also guide septal myectomy by predicting the thickness, volume, and extent of resected myocardium to achieve ideal resection.
Female
;
Humans
;
Male
;
Cardiomyopathy, Hypertrophic/diagnosis*
;
Imaging, Three-Dimensional
;
Printing, Three-Dimensional
;
Retrospective Studies
;
Treatment Outcome
;
Ventricular Septum
;
Adolescent
;
Young Adult
;
Adult
;
Middle Aged
;
Aged
10.Surgery for obstructive hypertrophic cardiomyopathy: challenge and future.
Chinese Journal of Surgery 2023;61(3):181-186
After more than 60 years of development, with the deepening of the pathophysiological understanding of obstructive hypertrophic cardiomyopathy, the extent and resection thickness of myectomy have increased significantly. Myectomy combined with the correction of anomalies of the mitral valve apparatus has become the standard treatment of obstructive hypertrophic cardiomyopathy. Only a few centers worldwide can routinely perform it due to the difficulty. Because of the advances of new drugs and interventional therapy, the development of surgical treatment faces many challenges. At the same time, generations of cardiovascular surgeons are constantly trying to promote septal myectomy, including developing devices and the surgical field, as well as improving surgical planning by advanced technology. At present, the superior long-term efficacy of septal myectomy has been confirmed. It is necessary to work together to promote the treatment of hypertrophic obstructive cardiomyopathy, so as to guard people's health.
Humans
;
Cardiomyopathy, Hypertrophic/surgery*
;
Heart Septum/surgery*
;
Mitral Valve/surgery*
;
Mitral Valve Insufficiency/surgery*
;
Treatment Outcome

Result Analysis
Print
Save
E-mail