1.CT radiomics and clinical indicators combined model in early prediction the severity of acute pancreatitis
Dandan XU ; Aoqi XIAO ; Weisen YANG ; Yan GU ; Dan JIN ; Guojian YIN ; Hongkun YIN ; Guohua FAN ; Junkang SHEN ; Liang XU
Chinese Journal of Emergency Medicine 2024;33(10):1383-1389
Objective:To explore the value of the Nomogram model established by CT radiomics combined with clinical indicators for prediction of the severity of early acute pancreatitis (AP).Methods:From January 2016 to March 2023, the AP patients in the Second Affiliated Hospital of Soochow University were retrospectively collected. According to the revised Atlanta classification and definition of acute pancreatitis in 2012, all patients were divided into the severe group and the non-severe group. All patients were first diagnosed, and abdominal CT plain scan and enhanced scan were completed within 1 week. Patients were randomly (random number) divided into training and validation groups at a ratio of 7:3. The pancreatic parenchyma was delineated as the region of interest on each phase CT images, and the radiomics features were extracted by python software. LASSO regression and 10-fold cross-validation were used to reduce the dimension and select the optimal features to establish the radiomics signature. Multivariate Logistic regression was used to select the independent predictors of severe acute pancreatitis (SAP), and a clinical model was established. A Nomogram model was established by combining CT radiomics signature and clinical independent predictors. Receiver operating characteristic (ROC) curve and decision curve analysis (DCA) were used to evaluate the predictive efficacy of each model.Results:Total of 205 AP patients were included (59 cases in severe group, 146 cases in non-severe group). 3, 5, 5 and 5 optimal radiomics features were selected from the plain CT scan, arterial phase, venous phase and delayed phase images of all patients, and the radiomics models were established. Among them, the arterial phase radiomics model had relatively better performance in predicting SAP, with an area under curve (AUC) of 0.937 in the training group and 0.913 in the validation group. Multivariate Logistic regression showed that C-reactive protein (CRP) and lactate dehydrogenase (LDH) were independent predictors of SAP, and they were used to establish a clinical model. The AUC in the training and validation groups were 0.879 and 0.889, respectively. The Nomogram model based on arterial phase CT radiomics signature, CRP and LDH was established, and the AUC was 0.956 and 0.947 in the training group and validation group, respectively. DCA showed that the net benefit of Nomogram model was higher than that of clinical model or radiomics model alone.Conclusions:The Nomogram model established by CT radiomics combined with clinical indicators has high application value for early prediction of the severity of AP, which is conducive to the formulation of clinical treatment plans and prognosis evaluation.
2.Predictive value of spectral CTA parameters for infarct core in acute ischemic stroke
Yan GU ; Dai SHI ; Yeqing WANG ; Dandan XU ; Aoqi XIAO ; Dan JIN ; Kuan LU ; Wu CAI ; Guohua FAN ; Junkang SHEN ; Liang XU
Chinese Journal of Emergency Medicine 2024;33(11):1572-1579
Objective:To investigate the value of dual-detector spectral CTA in distinguishing infarct core from penumbra in patients with acute ischemic stroke(AIS), and to further explore the risk factors associated with infarct core and their predictive value.Methods:The imaging and clinical data of 163 patients with AIS who met the inclusion criteria admitted to the Second Affiliated Hospital of Soochow University from March 2022 to May 2023 were retrospectively analyzed. Patients from March 2022 to December 2022 were used as the training group, and patients from January 2023 to May 2023 were used as the validation group for internal validation. The head and neck spectral CTA and brain CT perfusion imaging with dual-layer detector spectral CT were all carried out on all patients. Using CTP as reference, the patients were divided into infarct core group and non-infarct core group according to whether an infarct core occurred in the hypoperfusion regions of brain tissue. Multivariate logistic regression analysis was used to screen predictors related to the infarct core. The receiver operating characteristic (ROC) curve was used to evaluate the predictive efficacy.Results:A total of 163 patients were included in the study, including 112 in the training group and 51 in the validation group. There were significant differences in iodine density, effective atomic number, hypertension, triglyceride and neutrophils between the two groups ( P< 0.05). The cutoff values for iodine density values and effective atomic number values were 0.215 mg/mL and 7.405, respectively. Multivariate logistic regression analysis showed that iodine density and hypertension were independent risk factors for infarct core in AIS, and triglyceride was an independent protective factor. The area under the ROC curve (AUC) of iodine density value was the largest (0.859), with a sensitivity of 70.27%, and a specificity of 90.67%, which had a good predictive value. The ROC curve analysis results for the validation group were consistent with the training group. Conclusions:Spectral CT parameters iodine density values and effective atomic number values have the potential to distinguish the infarct core area from the penumbra area in patients with AIS. Iodine density and hypertension were independent risk factors of infarct core in AIS, triglyceride was an independent protective factor, and iodine density values obtained by dual-layer spectral detector CT had a high predictive value.