1.Saponins from Panax japonicus ameliorate high-fat diet-induced anxiety by modulating FGF21 resistance.
Yan HUANG ; Bo-Wen YUE ; Yue-Qin HU ; Wei-Li LI ; Dian-Mei YU ; Jie XU ; Jin-E WANG ; Zhi-Yong ZHOU
China Journal of Chinese Materia Medica 2025;50(1):29-41
Anxiety disorder is a highly prevalent psychological illness, and research has shown that obesity is a significant risk factor for its development. This study explored the ameliorative effects and mechanisms of saponins from Panax japonicus(SPJ) on anxiety disorder in mice fed a high-fat diet(HFD). Fifty C57BL/6J mice were randomly divided into normal control diet(NCD) group, HFD group, and low-and high-dose SPJ groups. At week 12, six mice from the HFD group were further divided into a control group(treated with DMSO) and an exogenous fibroblast growth factor 21(FGF21) group(administered rFGF21). The anxiety-like behavior of the mice was assessed using the open field test and elevated plus maze test. Hematoxylin-eosin(HE) staining and oil red O staining were performed to observe pathological changes in the liver and adipose tissue. Glucose metabolism was evaluated through the glucose tolerance test(GTT) and insulin tolerance test(ITT). Western blot analysis was performed to detect the expression of FGF21 and its downstream-related proteins in the liver and cortex, along with the expression of brain-derived neurotrophic factor(BDNF), disks large homolog 4(DLG4), and synaptophysin(SYP) in the cortex. Real-time quantitative fluorescent PCR(qPCR) was used to detect the expression of FGF21 and its receptor genes in the liver and cortex. Immunofluorescence staining was employed to examine the expression of neuronal activator c-Fos, FGF21, and the FGF21 co-receptor β-klotho in the cerebral cortex. The results showed that SPJ significantly improved the frequency of activity in the open arms of the elevated plus maze and the central area of the open field in HFD mice, up-regulated the expression of BDNF, DLG4, and SYP, and effectively alleviated anxiety-like behaviors in HFD mice. Compared with the NCD group, HFD mice exhibited up-regulated expression of FGF21 in the liver and cerebral cortex, while the expression of fibroblast growth factor receptor 1(FGFR1) and β-klotho was significantly down-regulated, suggesting that HFD mice exhibited FGF21 resistance. SPJ markedly up-regulated the β-klotho levels in HFD mice, reversing FGF21 resistance. Further comparison with exogenously administered FGF21 revealed that SPJ activates brain cortical regions in a consistent manner, and additionally, SPJ promotes the number and colocalization of c-Fos and β-klotho positive cells in the brain cortex. In summary, SPJ effectively alleviates anxiety-like behaviors in HFD mice. Its mechanism is associated with up-regulation of β-klotho expression in the brain, reversal of FGF21 resistance, and subsequent activation of neurons in the cerebral cortex and amygdala.
Animals
;
Diet, High-Fat/adverse effects*
;
Fibroblast Growth Factors/genetics*
;
Mice
;
Male
;
Panax/chemistry*
;
Mice, Inbred C57BL
;
Anxiety/etiology*
;
Saponins/administration & dosage*
;
Brain-Derived Neurotrophic Factor/genetics*
;
Humans
;
Liver/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
2.The Medial Prefrontal Cortex-Basolateral Amygdala Circuit Mediates Anxiety in Shank3 InsG3680 Knock-in Mice.
Jiabin FENG ; Xiaojun WANG ; Meidie PAN ; Chen-Xi LI ; Zhe ZHANG ; Meng SUN ; Tailin LIAO ; Ziyi WANG ; Jianhong LUO ; Lei SHI ; Yu-Jing CHEN ; Hai-Feng LI ; Junyu XU
Neuroscience Bulletin 2025;41(1):77-92
Anxiety disorder is a major symptom of autism spectrum disorder (ASD) with a comorbidity rate of ~40%. However, the neural mechanisms of the emergence of anxiety in ASD remain unclear. In our study, we found that hyperactivity of basolateral amygdala (BLA) pyramidal neurons (PNs) in Shank3 InsG3680 knock-in (InsG3680+/+) mice is involved in the development of anxiety. Electrophysiological results also showed increased excitatory input and decreased inhibitory input in BLA PNs. Chemogenetic inhibition of the excitability of PNs in the BLA rescued the anxiety phenotype of InsG3680+/+ mice. Further study found that the diminished control of the BLA by medial prefrontal cortex (mPFC) and optogenetic activation of the mPFC-BLA pathway also had a rescue effect, which increased the feedforward inhibition of the BLA. Taken together, our results suggest that hyperactivity of the BLA and alteration of the mPFC-BLA circuitry are involved in anxiety in InsG3680+/+ mice.
Animals
;
Prefrontal Cortex/metabolism*
;
Basolateral Nuclear Complex/metabolism*
;
Mice
;
Anxiety/metabolism*
;
Nerve Tissue Proteins/genetics*
;
Male
;
Gene Knock-In Techniques
;
Pyramidal Cells/physiology*
;
Mice, Transgenic
;
Neural Pathways/physiopathology*
;
Mice, Inbred C57BL
;
Microfilament Proteins
3.Genetic differences in hippocampus of mice susceptible to sepsis-associated encephalopathy.
Journal of Central South University(Medical Sciences) 2024;49(11):1777-1789
OBJECTIVES:
Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, which can lead to long-term cognitive impairment and anxiety in patients, and may even contribute to mortality in septic individuals. There is substantial individual variability in the incidence and severity and susceptibility of SAE, but the mechanisms regulating susceptibility remain unclear. Previous studies have shown that hippocampal damage is directly associated with cognitive and emotional disturbances in SAE. This study aims to explore the impact of hippocampal differentially expressed genes on SAE susceptibility in a mouse model.
METHODS:
Male specific pathogen-free (SPF)-grade C57BL/6 mice (6-8 weeks old) were randomly divided into a saline control group (Con group) and an SAE model group. SAE was induced by intraperitoneal injection of 10 mg/kg lipopolysaccharide (LPS), while control mice received an equivalent volume of saline. Cognitive and anxiety-like behaviors were assessed using the open field test (OFT), novel object recognition (NOR), and Y-maze test. Based on mean±standard deviation of behavioral results from the Con group, SAE mice were further classified into high-sensitivity (HS) and low-sensitivity (LS) subgroups. Immunohistochemistry was performed to detect the expression of immediate early gene c-Fos and neuronal marker neuronal nuclei (NeuN). Nissl staining was used to assess neuronal injury in the dentate gyrus (DG), cornu ammonis 1 (CA1), and cornu ammonis 3 (CA3) regions of the hippocampus. RNA sequencing (RNA-seq) was conducted on hippocampal tissues from HS and LS mice to identify differentially expressed genes, followed by pathway enrichment analysis.
RESULTS:
No significant behavioral susceptibility differences were observed between the overall SAE group and controls. However, HS mice showed severer cognitive deficits and anxiety-like behavior compared to LS mice. Immunohistochemistry revealed significantly higher expression of c-Fos in the hippocampus of LS mice (P<0.05), while Nissl and NeuN staining revealed milder neuronal damage in the hippocampus of LS mice than that of HS mice (both P<0.05). RNA-seq analysis identified 130 upregulated and 142 downregulated DEGs in LS and HS mice, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that upregulated genes in LS mice were primarily involved in pluripotency regulation, cyclic adenosine monophosphate (cAMP) signaling, and Wnt signaling pathways, in contrast, the downregulated genes were mainly related to cell adhesion, neuroactive ligand-receptor interaction, and calcium signaling pathways.
CONCLUSIONS
Differential gene expression in the hippocampus may contribute to individual susceptibility to cognitive and emotional dysfunction in SAE, suggesting potential genetic targets for individualized intervention.
Animals
;
Sepsis-Associated Encephalopathy/genetics*
;
Male
;
Hippocampus/pathology*
;
Mice, Inbred C57BL
;
Mice
;
Anxiety/genetics*
;
Lipopolysaccharides
;
Genetic Predisposition to Disease
;
Disease Models, Animal
;
Sepsis/genetics*
4.The role of methylation of placental glucocorticoid response gene in the association between pregnancy-related anxiety in the third trimester and birth outcomes.
Hui LIU ; Bei Bei ZHU ; Fang Biao TAO ; Shan Shan SHAO
Chinese Journal of Preventive Medicine 2023;57(2):208-214
Objective: To investigate the role of methylation of placental glucocorticoid response gene in the association between pregnancy-related anxiety in the third trimester and birth outcomes. Methods: Based on a prospective cohort study, singleton live births and their mothers from the Ma'anshan Birth Cohort Study (MABC) were included as participants in this study. The maternal pregnancy-related anxiety symptoms in the third trimester of pregnancy were evaluated by using the Pregnancy-related Anxiety Questionnaire. The neonatal birth outcomes were collected from medical records. The placental tissues from 300 pregnant women with pregnancy-related anxiety and 300 without pregnancy-related anxiety were collected to detect the methylation of FKBP5, NR3C1 and HSD11B2 genes using the Methyl Target approach. The methylation factors were extracted by exploratory factor analysis. Linear regression or logistic regression models were used to analyze the association between pregnancy-related anxiety in the third trimester, methylation factor scores, and birth outcomes. The mediating role of methylation factors in the association between pregnancy-related anxiety in the third trimester and birth outcomes was analyzed by using the Process procedure. Results: The mean age of 2 833 pregnant women was (26.60±3.60) years old. After adjusting for confounding factors, pregnancy-related anxiety in the third trimester increased the risk of small-for-gestational-age (OR=1.32, 95%CI:1.00-1.74). A total of 5 methylation factors were extracted, and the factor 5 was loaded with FKBP5 CpGs 18-21. Pregnancy-related anxiety in the third trimester was negatively correlated with the factor 5 (β=-0.24,95%CI:-0.44--0.05). The factor 5 was positively correlated with the gestational age (β=0.17, 95%CI:0.06-0.27). In addition, the factor 2 (β=0.02,95%CI:0.00-0.04) and factor 3 (β=0.03,95%CI:0.01-0.05) were positively correlated with 5-min Apgar score after delivery. However, this study did not found the mediating role of the scores of the factor characterized by FKBP5 in the relationship between pregnancy-related anxiety and birth outcomes. Conclusion: Pregnancy-related anxiety in the third trimester may reduce the methylation level of FKBP5 CpGs 18-21 in placental tissues and is associated with the risk of small-for-gestational-age.
Infant, Newborn
;
Pregnancy
;
Female
;
Humans
;
Young Adult
;
Adult
;
Pregnancy Trimester, Third
;
Placenta
;
Glucocorticoids/metabolism*
;
Cohort Studies
;
Prospective Studies
;
Methylation
;
Factor V/metabolism*
;
Anxiety/genetics*
5.Effect of Suanzaoren Decoction on expression of ionotropic glutamate receptors and synaptic plasticity in hippocampus of anxiety rats.
Hong-Kun WANG ; Jin-Ming HE ; Yue-Heng YAN ; Zi-Hao WANG ; Ruo-Xuan LI ; Yan-Yan WANG
China Journal of Chinese Materia Medica 2023;48(20):5583-5591
This study investigated the effect of Suanzaoren Decoction on the expression of N-methyl-D-aspartate receptors(NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors(AMPAR) in the hippocampus and synaptic plasticity in rats with conditioned fear-induced anxiety. The effect of Suanzaoren Decoction on rat behaviors were evaluated through open field experiment, elevated plus maze experiment, and light/dark box experiment. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of glutamate(Glu) and γ-aminobutyric acid(GABA) in the rat hippocampus. Real-time fluorescence quantitative PCR(qRT-PCR) and Western blot were employed to assess the gene and protein expression of ionotropic glutamate receptors in the hippocampal region. Transmission electron microscopy was utilized to observe the changes in the ultrastructure of synaptic neurons in the hippocampal region. Long-term potentiation(LTP) detection technique was employed to record the changes in population spike(PS) amplitude in the hippocampal region of mice in each group. The behavioral results showed that compared with the model group, the Suanzaoren Decoction group effectively increased the number of entries into open arms, time spent in open arms, percentage of time spent in open arms out of total movement time, number of entries into open arms out of total entries into both arms(P<0.01), and significantly increased the time spent in the light box and the number of shuttle crossings(P<0.01). There was an increasing trend in the number of grid crossings, entries into the center grid, and time spent in the center grid, indicating a significant anxiolytic effect. ELISA results showed that compared with the model group, the Suanzaoren Decoction group exhibited significantly reduced levels of Glu, Glu/GABA ratio(P<0.01), and significantly increased levels of GABA(P<0.01) in the rat hippocampus. Furthermore, Suanzaoren Decoction significantly decreased the gene and protein expression of NMDAR(GluN2B and GluN2A) and AMPAR(GluA1 and GluA2) compared with the model group. Transmission electron microscopy results demonstrated improvements in synapses, neuronal cells, and organelles in the hippocampal region of the Suanzaoren Decoction group compared with the model group. LTP detection results showed a significant increase in the PS amplitude changes in the hippocampal region of Suanzaoren Decoction group from 5 to 35 min compared with the model group(P<0.05, P<0.01). In conclusion, Suanzaoren Decoction exhibits significant anxiolytic effects, which may be attributed to the reduction in NMDAR and AMPAR expression levels and the improvement of synaptic plasticity.
Rats
;
Mice
;
Animals
;
Receptors, Ionotropic Glutamate/metabolism*
;
Hippocampus
;
Neuronal Plasticity
;
Receptors, N-Methyl-D-Aspartate/genetics*
;
Anxiety/genetics*
;
gamma-Aminobutyric Acid
6.Terminalia arjuna bark extract attenuates picrotoxin-induced behavioral changes by activation of serotonergic, dopaminergic, GABAergic and antioxidant systems.
Y CHANDRA SEKHAR ; G PHANI KUMAR ; K R ANILAKUMAR
Chinese Journal of Natural Medicines (English Ed.) 2017;15(8):584-596
Stress and emotion are associated with several illnesses from headaches to heart diseases and immune deficiencies to central nervous system. Terminalia arjuna has been referred as traditional Indian medicine for several ailments. The present study aimed to elucidate the effect of T. arjuna bark extract (TA) against picrotoxin-induced anxiety. Forty two male Balb/c mice were randomly divided into six experimental groups (n = 7): control, diazepam (1.5 mg·kg), picrotoxin (1 mg·kg) and three TA treatemt groups (25, 50, and 100 mg/kg). Behavioral paradigms and PCR studies were performed to determine the effect of TA against picrotoxin-induced anxiety. The results showed that TA supplementation increased locomotion towards open arm (EPM) and illuminated area (light-dark box test), and increased rearing frequency (open field test) in a dose dependent manner, compared to picrotoxin (P < 0.05). Furthermore, TA increased number of licks and shocks in Vogel's conflict. PCR studies showed an up-regulation of several genes, such as BDNF, IP, DL, CREB, GABA, SOD, GPx, and GR in TA administered groups. In conclusion, alcoholic extract of TA bark showed protective activity against picrotoxin in mice by modulation of genes related to synaptic plasticity, neurotransmitters, and antioxidant enzymes.
Animals
;
Antioxidants
;
metabolism
;
Anxiety Disorders
;
drug therapy
;
genetics
;
metabolism
;
psychology
;
Brain-Derived Neurotrophic Factor
;
genetics
;
metabolism
;
Dopamine Agents
;
administration & dosage
;
GABA Agents
;
administration & dosage
;
Glutathione Peroxidase
;
genetics
;
metabolism
;
Humans
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Neuronal Plasticity
;
drug effects
;
Neurotransmitter Agents
;
metabolism
;
Phytotherapy
;
Picrotoxin
;
adverse effects
;
Plant Bark
;
chemistry
;
Plant Extracts
;
administration & dosage
;
Serotonin Agents
;
administration & dosage
;
Superoxide Dismutase-1
;
genetics
;
metabolism
;
Terminalia
;
chemistry
7.Association between anxiety-depression and 5-HTTLPR gene polymorphism in school-aged twins.
Qiao ZHAO ; Yu-Ling LI ; Enherbayaer ; Yan LIU ; Yi DING
Chinese Journal of Contemporary Pediatrics 2016;18(1):61-66
OBJECTIVETo investigate the association between anxiety-depression and 5-HTTLPR gene polymorphism in school-aged twins.
METHODSA total of 147 pairs of twins (47 pairs of monozygotic twins, 100 pairs of dizygotic twins) aged 8-12 years from Baotou and Hohhot were selected as respondents. The Achenbach Child Behavior Checklist (CBCL) was used to calculate the scores of anxiety-depression factors in school-aged twins. The DNA was extracted from oral epithelial cells, and polymerase chain reaction was applied for 5-HTTLPR genotyping. The generalized estimating equation (GEE) was used to analyze the effect of 5-HTTLPR polymorphism and family environment on anxiety-depression in school-aged twins.
RESULTSThe children with LS and SS genotypes had significantly higher scores of anxiety-depression factors than those with LL genotype (χ2=3.938, P<0.05). The interaction of 5-HTTLPR genotype with family cohesion and family rearing patterns had a significant impact on the scores of anxiety-depression factors in twins (χ2=6.129 and 7.665, both P<0.05).
CONCLUSIONS5-HTTLPR genotype is significantly correlated with the scores of anxiety-depression factors in school-aged twins. In the family with high cohesion and an autocratic family rearing pattern, S allele may increase the possibility of anxiety-depression in twin children.
Anxiety ; genetics ; Child ; Depression ; genetics ; Female ; Genotype ; Humans ; Male ; Polymorphism, Genetic ; Serotonin Plasma Membrane Transport Proteins ; genetics ; Twins ; genetics
8.Bioinformatics analysis of differently expressed microRNAs in anxiety disorder.
Huimin FAN ; Wei NIU ; Mingjun HE ; Lingming KONG ; Aifang ZHONG ; Qiaoli ZHANG ; Yan YAN ; Liyi ZHANG
Chinese Journal of Medical Genetics 2015;32(5):641-646
OBJECTIVE To identify differentially expressed microRNA (miRNA) in peripheral blood mononuclear cells (PBMCs) of anxiety patients and predict their target genes and function by bioinformatics analysis. METHODS The miRNA expression profiles were determined using an Affymetrix array. To validate the results, real-time quantitative polymerase chain reaction (qRT-PCR) analysis in a larger cohort was employed. The targets of the differentially expressed miRNAs were predicted by Target Scan, miRBD, and DIANA-microT-CDS, and the results were analyzed by gene ontology (GO) and KEGG pathway analysis using FunNet. RESULTS MicroRNA microarray chip analysis has identified 7 miRNAs were detected with significant changes in expression in PBMCs of anxiety patients. qRT-PCR analysis has confirmed that the expression levels of 5 miRNAs (has-miR-4484, has-miR-4505, has-miR-4674, has-miR-501-3p and has-miR-663) were up-regulated. Intersecting the genes by Target Scan, miRBD, and DIANA-microT-CDS has predicted 195 targets. GO analysis showed that biological processes regulated by the predicted target genes have included diverse terms. Some terms, e.g., nervous system development, nerve growth factor receptor signaling pathway, neuron migration, dendrite development, regulation of neuron projection development, midbrain development, regulation of excitatory postsynaptic membrane potential, gliogenesis, dendrite morphogenesis, etc. have direct relationship with the central nervous system and brain functions. Pathway analysis showed that a significant enrichment in several pathways related to neuronal brain functions such as glutamatergic synapse, axon guidance, calcium signaling pathway, MAPK signaling pathway, GnRH signaling pathway, Wnt signaling pathway, gap junction, long-term potentiation and VEGF signaling pathway, etc. Among the five microRNAs, has-miR-4484, has-miR-4505, has-miR-4674 and has-miR-501-3p may have more important regulatory functions. CONCLUSION Five miRNAs (has-miR-4484, has-miR-4505, has-miR-4674, has-miR-501-3p and has-miR-663) are up-regulated in PBMCs of anxiety patients and may be closely involved in the pathogenesis of anxiety disorder.
Anxiety Disorders
;
genetics
;
Computational Biology
;
methods
;
Gene Expression Regulation
;
Humans
;
MicroRNAs
;
analysis
;
Real-Time Polymerase Chain Reaction

Result Analysis
Print
Save
E-mail