1.New insights into the role of heme oxygenase-1 in acute kidney injury
Kidney Research and Clinical Practice 2020;39(4):387-401
Acute kidney injury (AKI) is attended by injury-related biomarkers appearing in the urine and serum, decreased urine output, and impaired glomerular filtration rate. AKI causes increased morbidity and mortality and can progress to chronic kidney disease and end-stage kidney failure. AKI is without specific therapies and is managed by supported care. Heme oxygenase-1 (HO-1) is a cytoprotective, inducible enzyme that degrades toxic free heme released from destabilized heme proteins and, during this process, releases beneficial by-products such as carbon monoxide and biliverdin/bilirubin and promotes ferritin synthesis. HO-1 induction protects against assorted renal insults as demonstrated by in vitro and preclinical models. This review summarizes the advances in understanding of the protection conferred by HO-1 in AKI, how HO-1 can be induced including via its transcription factor Nrf2, and HO-1 induction as a therapeutic strategy.
2.New insights into the role of heme oxygenase-1 in acute kidney injury
Kidney Research and Clinical Practice 2020;39(4):387-401
Acute kidney injury (AKI) is attended by injury-related biomarkers appearing in the urine and serum, decreased urine output, and impaired glomerular filtration rate. AKI causes increased morbidity and mortality and can progress to chronic kidney disease and end-stage kidney failure. AKI is without specific therapies and is managed by supported care. Heme oxygenase-1 (HO-1) is a cytoprotective, inducible enzyme that degrades toxic free heme released from destabilized heme proteins and, during this process, releases beneficial by-products such as carbon monoxide and biliverdin/bilirubin and promotes ferritin synthesis. HO-1 induction protects against assorted renal insults as demonstrated by in vitro and preclinical models. This review summarizes the advances in understanding of the protection conferred by HO-1 in AKI, how HO-1 can be induced including via its transcription factor Nrf2, and HO-1 induction as a therapeutic strategy.
3. Bactericidal activity of selected medicinal plants against multidrug resistant bacterial strains from clinical isolates
Biswajit CHAKRABORTY ; Anupam NATH ; Himadri SAIKIA ; Mahuya SENGUPTA
Asian Pacific Journal of Tropical Medicine 2014;7(S1):S435-S441
Objective: To investigate the antibacterial effect of Curcuma longa (C. longa), Zingiber officinale (Z. officinale) and Tinospora cordifolia (T. cordifolia) against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Bacillus subtilis and Proteus mirabilis of clinical origin. Methods: The antimicrobial efficacy of said medicinal plants and establishment of multidrug resistant character of these bacteria were carried out using disc diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. Results: The results of MIC and MBC showed that these clinical bacterial isolates were phenotypically multidrug resistant against standard antibiotics (>500 μg/mL). Compared to standard antibiotics, C. longa, Z. officinale and T. cordifolia were more effective in killing these microbes as evident from MIC and MBC values (5 to 125 μg/mL). Moreover, C. longa had highest antibacterial efficacy compared to Z. officinale and T. cordifolia. Conclusions: The result thus obtained suggests that bioactive principles of these plants can be used particularly against these multidrug resistant bacteria of clinical origin.