1.Tamoxifen Induces Apoptosis of Leishmania major Promastigotes in Vitro.
Masoud DOROODGAR ; Mahdi DELAVARI ; Moein DOROODGAR ; Ali ABBASI ; Ali Akbar TAHERIAN ; Abbas DOROODGAR
The Korean Journal of Parasitology 2016;54(1):9-14
Tamoxifen is an antagonist of the estrogen receptor and currently used for the treatment of breast cancer. The current treatment of cutaneous leishmaniasis with pentavalent antimony compounds is not satisfactory. Therefore, in this study, due to its antileishmanial activity, effects of tamoxifen on the growth of promastigotes and amastigotes of Leishmania major Iranian strain were evaluated in vitro. Promastigotes and amastigotes were treated with different concentrations (1, 5, 10, 20, and 50 µg/ml) and time periods (24, 48, and 72 hr) of tamoxifen. After tamoxifen treatment, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5 biphenyl tetrazolium bromide assay) was used to determine the percentage of live parasites and Graph Pad Prism software to calculate IC50. Flow cytometry was applied to investigate the induction of tamoxifen-induced apoptosis in promastigotes. The half maximal inhibitory concentration (IC50) of tamoxifen on promastigotes was 2.6 µg/ml after 24 hr treatment. Flow cytometry analysis showed that tamoxifen induced early and late apoptosis in Leishmania promastigotes. While after 48 hr in control group the apoptosis was 2.0%, the 50 µg/L concentration of tamoxifen increased it to 59.7%. Based on the in vitro antileishmanial effect, tamoxifen might be used for leishmaniasis treatment; however, further researches on in vivo effects of tamoxifen in animal models are needed.
Animals
;
Antiprotozoal Agents/pharmacology/therapeutic use
;
Apoptosis/*drug effects
;
Cells, Cultured
;
Inhibitory Concentration 50
;
Leishmania major/*drug effects
;
Leishmaniasis, Cutaneous/drug therapy
;
Macrophages/parasitology
;
Mice
;
Tamoxifen/*pharmacology/therapeutic use
2.Effects of combined therapy with thalidomide and glucantime on leishmaniasis induced by Leishmania major in BALB/c mice.
Ghassem SOLGI ; Amina KARIMINIA ; Khossro ABDI ; Majid DARABI ; Behnaz GHAREGHOZLOO
The Korean Journal of Parasitology 2006;44(1):55-61
For treating Leishmania major infection in BALB/c mice, we used thalidomide in conjunction with glucantime. Groups of mice were challenged with 5 x 10(3) metacyclic promastigotes of L. major subcutaneously. A week after the challenge, drug treatment was started and continued for 12 days. Thalidomide was orally administrated 30 mg/kg/day and glucantime was administrated intraperitoneally (200 mg/kg/day). It was shown that the combined therapy is more effective than single therapies with each one of the drugs since the foot pad swelling in the group of mice received thalidomide and glucantime was significantly decreased (0.9 +/- 0.2 mm) compared to mice treated with either glucantime, thalidomide, or carrier alone (1.2 +/- 0.25, 1.4 +/- 0.3, and 1.7 +/- 0.27 mm, respectively). Cytokine study showed that the effect of thalidomide was not dependent on IL-12; however, it up-regulated IFN-gamma and down-regulated IL-10 production. Conclusively, thalidomide seems promising as a conjunctive therapy with antimony in murine model of visceral leishmaniasis.
Time Factors
;
Thalidomide/pharmacology/*therapeutic use
;
Organometallic Compounds/pharmacology/*therapeutic use
;
Mice, Inbred BALB C
;
Mice
;
Meglumine/pharmacology/*therapeutic use
;
Leishmaniasis, Visceral/*drug therapy/immunology
;
Leishmania major/*drug effects
;
Interleukin-12/analysis/biosynthesis
;
Interleukin-10/analysis/biosynthesis
;
Interferon Type II/analysis/biosynthesis/drug effects
;
Immunosuppressive Agents/pharmacology/*therapeutic use
;
Female
;
Drug Therapy, Combination
;
Disease Progression
;
Disease Models, Animal
;
Cells, Cultured
;
Antiprotozoal Agents/pharmacology/*therapeutic use
;
Animals
3.Anti-leishmanial Effects of Trinitroglycerin in BALB/C Mice Infected with Leishmania major via Nitric Oxide Pathway.
Hossein NAHREVANIAN ; Mana NAJAFZADEH ; Reza HAJIHOSSEINI ; Habib NAZEM ; Mahin FARAHMAND ; Zahra ZAMANI
The Korean Journal of Parasitology 2009;47(2):109-115
This study investigated whether trinitroglycerine (TNG) as nitric oxide (NO) releasing agent had anti-leishmanial effects and mediated pathology in BALB/c mice infected with Leishmania major. Cutaneous leishmaniasis (CL), a zoonotic infection caused by leishmania protozoa is still one of the health problems in the world and in Iran. NO is involved in host immune responses against intracellular L. major, and leishmania killing by macrophages is mediated by this substance. Moreover, application of CL treatment with NO-donors has been recently indicated. In our study, TNG was used for its ability to increase NO and to modify CL infection in mice, in order to evaluate NO effects on lesion size and formation, parasite proliferation inside macrophages, amastigote visceralization in target organs, and NO induction in plasma and organ suspensions. Data obtained in this study indicated that TNG increased plasma and liver-NO, reduced lesion sizes, removed amastigotes from lesions, livers, spleens, and lymph nodes, declined proliferation of amastigotes, hepatomegaly, and increased survival rate. However, TNG reduced spleen-NO and had no significant effects on spelenomegaly. The results show that TNG therapy reduced leishmaniasis and pathology in association with raised NO levels. TNG had some antiparasitic activity by reduction of positive smears from lesions, livers, spleens, and lymph nodes, which could emphasize the role of TNG to inhibit visceralization of L. major in target organs.
Animal Structures/parasitology
;
Animals
;
Antiprotozoal Agents/chemistry/*therapeutic use
;
Female
;
Leishmania major/*drug effects/immunology
;
Leishmaniasis, Cutaneous
;
Macrophages/parasitology
;
Mice
;
Mice, Inbred BALB C
;
Nitric Oxide/blood/metabolism/*pharmacology
;
Nitroglycerin/*analogs & derivatives/*therapeutic use
;
Severity of Illness Index
;
Skin/pathology
;
Survival Analysis