1.Diagnostic value of Epstein-Barr virus capsid antigen-IgA in nasopharyngeal carcinoma: a meta-analysis.
Shan LI ; Yan DENG ; Xi LI ; Qiao-pei CHEN ; Xiang-cheng LIAO ; Xue QIN
Chinese Medical Journal 2010;123(9):1201-1205
BACKGROUNDNon-invasive nasopharyngeal carcinoma (NPC) screening usually involves serological testing for the presence of IgA antibodies to Epstein-Barr virus (EBV) capsid antigen (VCA). The present meta-analysis determined the accuracy of VCA-IgA in the diagnosis of NPC.
METHODSA systematic review of studies was conducted and data on the accuracy of VCA-IgA concentrations in the diagnosis of NPC were pooled using random effects models. Receiver operating characteristic curves were used to summarize the overall test performance.
RESULTSTwenty studies met the inclusion criteria for the meta-analysis. The summary estimates for VCA-IgA in the diagnosis of NPC were: sensitivity 0.91 (95% confidence interval (CI): 0.90 - 0.92), specificity 0.92 (95%CI: 0.92 - 0.93), positive likelihood ratio 31.65 (95%CI: 10.99 - 91.15), negative likelihood ratio 0.10 (95%CI: 0.07 - 0.13) and diagnostic odds ratio 414.59 (95%CI: 174.96 - 982.42). The area under the summary receiver operating characteristic curves was 0.98.
CONCLUSIONThe sensitivity and the specificity of serum VCA-IgA are very high, suggesting that the presence of VCA-IgA in peripheral blood is a valuable predictor for NPC.
Antigens, Viral ; immunology ; Capsid Proteins ; immunology ; Carcinoma ; diagnosis ; immunology ; Humans ; Immunoglobulin A ; immunology ; Nasopharyngeal Neoplasms ; diagnosis ; immunology
2.Biological characteristics of influenza virus.
Chinese Journal of Pediatrics 2003;41(3):164-167
3.Vaccination of rhesus monkeys with recombinant antigen fragments and protection from hepatitis E virus infection.
Yan-bing MA ; Tian-hong XIE ; Guang-ming ZHANG ; Chun-hong LI ; Xie-Jie DAI ; Chang-bai DAI ; Mao-sheng SUN ; Jian LU ; Sheng-li BI
Acta Academiae Medicinae Sinicae 2002;24(6):592-595
OBJECTIVETo observe anti-HEV IgG response to vaccination of recombinant antigen fragments and evaluate its protection from Hepatitis E Virus infection in rhesus monkeys (Macaca mulatta).
METHODSTwelve monkeys were divided into three groups and immunized respectively with three different recombinant antigens: namely Ag1 (carboxyl terminal 431 amino acids of ORF2), Ag2 (128aa fragment at the carboxyl terminal of ORF2), and Ag3 (full length ORF3 ligated with two ORF2 fragments encoded by 6743-7126nt and 6287-6404nt). The monkeys were challenged intravenously with fecal suspension from experimentally infected rhesus monkeys, and the other three monkeys served as the placebo group for challenge with HEV. The dynamic changes of the levels of ALT and anti-HEV IgG were examined. Pathological changes of liver tissue were observed by light microscope. Excretion of virus was detected by RT-nPCR.
RESULTSHepatic histopathology of two monkeys in the placebo group was consistent with acute viral hepatitis, and ALT was elevated 3-4 weeks after inoculated with virus, up to 10-20 times higher than normal level. The liver tissue of monkeys immunized with antigen kept normal, ALT in several monkeys elevated mildly, and anti-HEV IgG conversation occurred at 1-2 weeks after vaccination, with the titer reaching 1:12,800. The virus RNA could be detected by RT-nPCR from days 7 to 50 in monkeys of control group, and from days 7 to 21 in vaccinated monkeys after challenged with virus.
CONCLUSIONSThe recombinant antigens could induce the production of anti-HEV IgG, which protected rhesus monkeys from acute Hepatitis symptoms related to HEV infection.
Animals ; Antigens, Viral ; immunology ; Hepatitis E ; prevention & control ; Hepatitis E virus ; immunology ; Immunoglobulin G ; immunology ; Macaca mulatta ; RNA, Viral ; blood ; Recombinant Proteins ; immunology ; Vaccination ; Viral Hepatitis Vaccines ; immunology
4.Study on the expression of E2 gene of classical swine fever virus in Pichia pastoris and the immunological activity of its expression product.
Xue-Qing HAN ; Xiang-Tao LIU ; Yong ZHANG ; Qing-Ge XIE ; Bo TIAN
Chinese Journal of Biotechnology 2002;18(2):208-211
E2 gene of classical swine fever virus (CSFV) was cloned into secretory pPIC9K Pichia pastoris expression vector. After being linearized by digestion, the vector was transformed into Pichia pastoris by electroporation to integrate with the genome, the transformants with high copies were screened by G418 and were induced to express with methonal. The results of SDS-PAGE and Western blot demonstrated that the supernatant of the induced P. pastoris culture contained protein E2. The results of the study on the immunological activity indicated that the protein E2 expressed in P. pastoris can elicit animal bodies to produce antibodies against protein E2.
Animals
;
Antibodies, Viral
;
immunology
;
Antigens, Viral
;
genetics
;
immunology
;
Classical swine fever virus
;
genetics
;
immunology
;
Cloning, Molecular
;
Gene Expression
;
Pichia
;
Rabbits
;
Swine
;
Viral Envelope Proteins
;
genetics
;
immunology
5.Expression and antigenicity analysis of hepatitis G virus NS5 gene.
Yu CONG ; Hongyuan JIAO ; Wenying ZHANG ; Ruiguang TIAN ; Meiyun ZHAN
Chinese Journal of Experimental and Clinical Virology 2002;16(2):150-153
BACKGROUNDTo determine the antigenicity of HGV NS5 recombinant proteins expressed in E.coli.
METHODSHGV NS5a,NS5b and core/NS5b fusion genes were cloned into pThioC vector. Three expression plasmids were transformed into JM109(DE3) competent cells then expressed with induction by IPTG. Western blot and ELISA were used to determine the antigenicity after the three recombinant proteins were purified.
RESULTSAfter identification by restriction enzyme and sequencing, it was confirmed that the expressed was target proteins espected. Purified expression proteins were found strongly immunoreactive among anti HGV positive sera by Western blot and ELISA. Compared with mixed recombinant antigen (including core, NS5a synthetic peptide and NS3 recombinant proteins), in the 22 positive sera detected with mixed antigen, 68%(15/22), 90%(20/22) and 73%(16/22) were positive by P5a,P5b and Pc?5b antigens; In the 70 negative samples with mixed antigen, 7%(5/70), 1%(1/70) and 6%(4/70) were positive by P5a, P5b and Pc?5b antigens. The positive alone was found among RTPCR positive specimen using these recombinant antigens.
CONCLUSIONSNS5 gene expressed in E.coli?which couldn't be covered with other regions of antigens was one of the essential epitopes to HGV immunologic diagnosis.
Antibodies, Viral ; blood ; Antigens, Viral ; blood ; Epitopes ; immunology ; GB virus C ; genetics ; immunology ; Humans ; Plasmids ; genetics ; Recombinant Proteins ; biosynthesis ; immunology ; Viral Nonstructural Proteins ; genetics ; immunology
6.Study on serological cross-reactivity of six pathogenic phleboviruses.
Wei WU ; Shuo ZHANG ; Quan-Fu ZHANG ; Chuan LI ; Mi-Fang LIANG ; De-Xin LI
Chinese Journal of Virology 2014;30(4):387-390
This article aimed to study the antigenicity of nucleocapsid proteins (NPs) in six pathogenic phleboviruses and to provide theoretical evidence for the development of serological diagnostic reagents. NPs of six pathogenic phleboviruses were expressed and purified using a prokaryotic expression system and rabbits were immunized with individual recombinant NPs. Cross-reactions among NPs and rabbit sera were determined by both indirect ELISA and Western blotting analyses, and the sera titer was determined by indirect ELISA. Furthermore, sera from SFTS patients were also detected by each recombinant NP as a coating antigen using indirect ELISA. The cross-reactions and the sera titer were subsequently determined. Both the concentration and purity of recombinant NPs of six pathogenic phleboviruses met the standards for immunization and detection. The results of indirect ELISA and Western blotting showed that each anti-phlebovirus NP rabbit immune serum had potential serological cross-reactivity with the other five virus NP antigens. Furthermore, the sera from SFTS patients also had cross-reactivity with the other five NP antigens to a certain extent. Our preliminary study evaluated the antigenicity and immune reactivity of six pathogenic phleboviruses NPs and laid the foundation for the development of diagnostic reagents.
Animals
;
Antibodies, Viral
;
immunology
;
Antigens, Viral
;
genetics
;
immunology
;
Cross Reactions
;
Humans
;
Nucleocapsid Proteins
;
genetics
;
immunology
;
Phlebotomus Fever
;
diagnosis
;
immunology
;
virology
;
Phlebovirus
;
classification
;
genetics
;
immunology
;
isolation & purification
;
Rabbits
8.Little role of anti-gB antibodies in neutralizing activity of patient's sera with human cytomegalovirus (HCMV) infection.
Jae Won PARK ; Dae Joong KIM ; Jinhee KIM ; Chung Gyu PARK ; Eung Soo HWANG ; Chang Yong CHA
Journal of Korean Medical Science 2000;15(2):133-138
Human cytomegalovirus (HCMV) gB is known to play important roles in cell surface attachment, virion penetration, spread of infection from cell to cell, and provocation of neutralizing antibody. This study was performed to determine the role of anti-HCMV gB antibody in overall neutralizing response in patients with HCMV infection and healthy control with past infection. HCMV gB was stably expressed in 293 cells. With the stable cell line expressing gB as a specific immunosorbent, anti-gB antibody was removed from the current and past HCMV-infected sera and the remaining neutralizing activity was measured by plaque assay. It was shown that 19-50% of the total virus-neutralizing activity of sera with past HCMV infections was derived from anti-gB antibody, but anti-gB antibody had little effect on the total serum virus-neutralizing activity in patients currently infected with HCMV. This result suggests that neutralizing antibody to HCMV gB may reflect disease status.
Adult
;
Antibodies, Monoclonal
;
Antibodies, Viral/immunology*
;
Antibodies, Viral/blood
;
Antigens, Viral/immunology
;
Antigens, Viral/genetics
;
Cells, Cultured
;
Cytomegalovirus/immunology*
;
Cytomegalovirus Infections/prevention & control
;
Cytomegalovirus Infections/immunology*
;
Female
;
Fetus/cytology
;
Fibroblasts/cytology
;
Gene Expression Regulation, Viral/immunology
;
Human
;
Immunosorbents
;
Lung/cytology
;
Male
;
Middle Age
;
Neutralization Tests
;
Recombinant Proteins/genetics
;
Viral Envelope Proteins/immunology*
;
Viral Vaccines
9.Hot issues of immunology in viral hepatitis C.
Chinese Journal of Hepatology 2009;17(7):490-493
Animals
;
Antigens, CD
;
immunology
;
Cytokines
;
metabolism
;
Hepacivirus
;
immunology
;
Hepatitis C
;
immunology
;
prevention & control
;
virology
;
Hepatitis C Antibodies
;
biosynthesis
;
immunology
;
Hepatitis C Antigens
;
immunology
;
Humans
;
Killer Cells, Natural
;
immunology
;
T-Lymphocytes
;
immunology
;
metabolism
;
T-Lymphocytes, Regulatory
;
immunology
;
metabolism
;
Viral Proteins
;
immunology
10.Antigen targeting to M cells for enhancing the efficacy of mucosal vaccines.
Experimental & Molecular Medicine 2014;46(3):e85-
Vaccination is one of the most successful applications of immunology and for a long time has depended on parenteral administration protocols. However, recent studies have pointed to the promise of mucosal vaccination because of its ease, economy and efficiency in inducing an immune response not only systemically, but also in the mucosal compartment where many pathogenic infections are initiated. However, successful mucosal vaccination requires the help of an adjuvant for the efficient delivery of vaccine material into the mucosa and the breaking of the tolerogenic environment, especially in oral mucosal immunization. Given that M cells are the main gateway to take up luminal antigens and initiate antigen-specific immune responses, understanding the role and characteristics of M cells is crucial for the development of successful mucosal vaccines. Especially, particular interest has been focused on the regulation of the tolerogenic mucosal microenvironment and the introduction of the luminal antigen into the lymphoid organ by exploiting the molecules of M cells. Here, we review the characteristics of M cells and the immune regulatory factors in mucosa that can be exploited for mucosal vaccine delivery and mucosal immune regulation.
Administration, Oral
;
Animals
;
Antigens, Bacterial/*immunology
;
Antigens, Viral/*immunology
;
Bacterial Vaccines/administration & dosage/*immunology
;
Humans
;
Immunity, Mucosal
;
Intestinal Mucosa/cytology/*immunology
;
Peyer's Patches/cytology/*immunology
;
Viral Vaccines/administration & dosage/*immunology