1.Probability of Antibody Formation against Circumsporozoite Protein of Plasmodium vivax among Korean Malaria Patients.
Ho Woo NAM ; Kyoung Ju SONG ; Hye Jin AHN ; Zhaoshou YANG ; Chom Kyu CHONG ; Pyo Yun CHO ; Seong Kyu AHN ; Tong Soo KIM
The Korean Journal of Parasitology 2014;52(2):143-149
To evaluate the seroprevalence against circumsporozoite protein (CSP) of Plasmodium vivax in sera of Korean patients, the central repeating domain (CRD) of CSP was cloned and analyzed. From the genomic DNA of patient's blood, 2 kinds of CSPs were identified to belong to a VK210 type, which is the dominant repeating of GDRA(D/A)GQPA, and named as PvCSPA and PvCSPB. Recombinantly expressed his-tagged PvCSPA or PvCSPB in Escherichia coli reacted well against sera of patients in western blot, with the detecting rate of 47.9% (58/121), which included 15 cases positive for PvCSPA, 6 cases positive for PvCSPB, and 37 cases for both. The mixture of PvCSPA and PvCSPB was loaded to a rapid diagnostic test kit (RDT) and applied with the same set of patient sera, which resulted in detection rates of 57.0% (69/121). When the protein sequences of PvCSPA were compared with those of P. vivax in endemic regions of India and Uganda, they were compatibly homologous to PvCSPA with minor mutations. These results suggested that the recombinant PvCSPA and PvCSPB loaded RDT may be a milestone in latent diagnosis which has been a hot issue of domestic malaria and important for radical therapy in overlapped infections with P. falciparum in tropical and subtropical areas. During the biological process of malarial infection, exposure of CSP to antigen-antibody reaction up to 57.0% is the first report in Korea.
Amino Acid Sequence
;
Antibodies, Protozoan/*blood/immunology
;
Antibody Formation
;
Antigens, Protozoan/immunology
;
Base Sequence
;
Humans
;
India
;
Malaria, Vivax/*diagnosis/*epidemiology/immunology
;
Merozoite Surface Protein 1/genetics/*immunology
;
Plasmodium vivax/genetics/immunology
;
Protozoan Proteins/genetics/*immunology
;
Reagent Kits, Diagnostic
;
Recombinant Proteins/diagnostic use/immunology
;
Republic of Korea/epidemiology
;
Sequence Analysis, DNA
;
Seroepidemiologic Studies
;
Uganda
2.Pathogenic free-living amoebae in Korea.
The Korean Journal of Parasitology 2004;42(3):93-119
Acanthamoeba and Naegleria are widely distributed in fresh water, soil and dust throughout the world, and cause meningoencephalitis or keratoconjunctivitis in humans and other mammals. Korean isolates, namely, Naegleria sp. YM-1 and Acanthamoeba sp. YM-2, YM-3, YM-4, YM-5, YM-6 and YM-7, were collected from sewage, water puddles, a storage reservoir, the gills of a fresh water fish, and by corneal washing. These isolates were categorized into three groups based on the mortalities of infected mice namely, highly virulent (YM-4), moderately virulent (YM-2, YM-5 and YM-7) and nonpathogenic (YM-3). In addition, a new species of Acanthamoeba was isolated from a freshwater fish in Korea and tentatively named Korean isolate YM-4. The morphologic characters of its cysts were similar to those of A. culbertsoni and A. royreba, which were previously designated as Acanthamoeba group III. Based on experimentally infected mouse mortality, Acanthamoeba YM-4 was highly virulent. The isoenzymes profile of Acanthamoeba YM-4 was similar to that of A. royreba. Moreover, an anti-Acanthamoeba YM-4 monoclonal antibody reacted only with Acanthamoeba YM-4, and not with A. culbertsoni. Random amplified polymorphic DNA marker analysis and RFLP analysis of mitochondrial DNA and of a 18S small subunit ribosomal RNA, placed Acanthamoeba YM-4 in a separate cluster based on phylogenic distances. Thus Acanthamoeba YM-4 was identified as a new species, and assigned Acanthamoeba sohi. Up to the year 2002 in Korea, two clinical cases were found to be infected with Acanthamoeba spp. These patients died of meningoencephalitis. In addition, one case of Acanthamoeba pneumonia with an immunodeficient status was reported and Acanthamoeba was detected in several cases of chronic relapsing corneal ulcer, chronic conjunctivitis, and keratitis.
*Acanthamoeba/classification/genetics/immunology/pathogenicity
;
Amebiasis/diagnosis/epidemiology/*parasitology/therapy
;
Animals
;
Antigens, Protozoan/analysis/genetics/immunology
;
DNA, Mitochondrial/analysis
;
DNA, Protozoan/analysis
;
Korea/epidemiology
;
Life Cycle Stages
;
*Naegleria/classification/genetics/immunology/pathogenicity
;
Phylogeny
;
Polymorphism, Restriction Fragment Length
;
Random Amplified Polymorphic DNA Technique/veterinary
;
Virulence/genetics
3.Primary structure of mature SAG1 gene of an Indonesian Toxoplasma gondii and comparison with other strains.
Sri HARTATI ; Asmarani KUSUMAWATI ; Hastari WURYASTUTI ; J Sri WIDADA
Journal of Veterinary Science 2006;7(3):263-270
Toxoplasma gondii is a persistent protozoan parasite capable of infecting almost any warm-blooded vertebrates. SAG1 (p30) is the prototypic member of a superfamily of surface antigens called SRS (SAG1-related sequence). It constitutes the most abundant and predominant antigen. In this paper the primary structure of mature SAG1 gene of an Indonesian T. gondii isolate is described and sequence comparison is made with published sequence data of 7 other strains or isolates. Sequence comparison indicated that SAG1 is highly conserved through evolution and despite parasite spreading world-wide. Sequences may be divided into two major families, independent of the strain/isolate geographic origin. Variations were mainly localized at the C-terminal half or domain 2 and some clustered in restricted areas. Sequence comparison allowed us to define the Indonesian isolate as genuine virulent RH strain. A phylogenetic tree of Toxoplasma strains/isolates was constructed based on SAG1.
Amino Acid Sequence
;
Animals
;
Antigens, Protozoan/chemistry/*genetics
;
Base Sequence
;
Cloning, Molecular
;
DNA, Protozoan/chemistry/genetics
;
Goat Diseases/parasitology
;
Goats
;
Indonesia
;
Molecular Sequence Data
;
Phylogeny
;
Polymerase Chain Reaction
;
Protozoan Proteins/chemistry/*genetics
;
Sequence Alignment
;
Sequence Analysis, DNA
;
Toxoplasma/*genetics/*immunology/isolation&purification
;
Toxoplasmosis/parasitology
;
Zoonoses/parasitology