1.CD36, a scavenger receptor implicated in atherosclerosis.
Experimental & Molecular Medicine 2014;46(6):e99-
CD36 is a membrane glycoprotein that is present on various types of cells, including monocytes, macrophages, microvascular endothelial cells, adipocytes and platelets. Macrophage CD36 participates in atherosclerotic arterial lesion formation through its interaction with oxidized low-density lipoprotein (oxLDL), which triggers signaling cascades for inflammatory responses. CD36 functions in oxLDL uptake and foam cell formation, which is the initial critical stage of atherosclerosis. In addition, oxLDL via CD36 inhibits macrophage migration, which may be a macrophage-trapping mechanism in atherosclerotic lesions. The role of CD36 was examined in in vitro studies and in vivo experiments, which investigated various functions of CD36 in atherosclerosis and revealed that CD36 deficiency reduces atherosclerotic lesion formation. Platelet CD36 also promotes atherosclerotic inflammatory processes and is involved in thrombus formation after atherosclerotic plaque rupture. Because CD36 is an essential component of atherosclerosis, defining the function of CD36 and its corresponding signaling pathway may lead to a new treatment strategy for atherosclerosis.
Animals
;
Antigens, CD36/chemistry/genetics/*metabolism
;
Atherosclerosis/*metabolism/pathology
;
Humans
;
Macrophages/metabolism/pathology
;
Plaque, Atherosclerotic/*metabolism/pathology
2.The inhibitory effect of latent transforming growth factor β1 activation and silicosis by CD36 targeted RNA interference in silicosis model of rat.
Xin WANG ; Yan-rang WANG ; De-yi YANG ; Ming ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2013;31(7):518-521
OBJECTIVETo investigate the inhibitory effects of CD36-targeting RNA interference on the latent transforming growth factor β1 (L-TGF-β1) activation and silicotic fibrosis in rat silicosis model.
METHODSWistar rats were divided into four groups: saline control group (n=24), SiO2 model group (10 mg SiO2 per rat) (n=24), SiO2+Lv-shCD36 group (lentiviral vector expressing specific shRNA against CD36) (n=24), and SiO2+Lv-shCD36-NC group (non-silence control lentivirus) (n=24). At 7, 21, and 28 d after instillation, the rats were sacrificed. The activity of TGF-β1 in bronchoalveolar lavage fluid (BALF) was measured by evaluating its inhibitory effect on the proliferation of mink lung epithelial cells. The pathological changes of lung tissue were observed by HE staining and van Gieson staining. The hydroxyproline content in the lungs was determined by alkaline lysis method.
RESULTSAt 7 d after instillation, the expression of CD36 mRNA in alveolar macrophages was significantly lower in the SiO2+Lv-shCD36 group than in the saline control group, SiO2 model group, and SiO2+Lv-shCD36-NC group (P < 0.05); the quantity and percentage of active TGF-β1 in BALF were significantly lower in the SiO2+Lv-shCD36 group than in the SiO2 model group and SiO2+Lv-shCD36-NC group (P < 0.05). At 28 d after instillation, there were cellular silicotic nodules in the lungs of rats in SiO2+Lv-shCD36 group and fibrotic cellular silicotic nodules in the lungs of rats in SiO2 model group and SiO2+Lv-shCD36-NC group. At 21 and 28 d after instillation, the hydroxyproline content was significantly lower in the SiO2+Lv-shCD36 group than in the SiO2 model group and SiO2+Lv-sh CD36-NC group (P < 0.05).
CONCLUSIONCD36-targeting RNA interference has inhibitory effects on the L-TGF-β1 activation and silicotic fibrosis in rat silicosis model.
Animals ; Bronchoalveolar Lavage Fluid ; chemistry ; CD36 Antigens ; genetics ; metabolism ; Disease Models, Animal ; Female ; Hydroxyproline ; chemistry ; Macrophages, Alveolar ; metabolism ; Male ; RNA Interference ; Rats ; Rats, Wistar ; Silicon Dioxide ; toxicity ; Silicosis ; metabolism ; prevention & control ; Transforming Growth Factor beta1 ; metabolism