1.The role of gut-liver axis in the pathogenesis of liver cirrhosis and portal hypertension.
Clinical and Molecular Hepatology 2012;18(4):337-346
Because of the anatomical position and its unique vascular system, the liver is susceptible to the exposure to the microbial products from the gut. Although large amount of microbes colonize in the gut, translocation of the microbes or microbial products into the liver and systemic circulation is prevented by gut epithelial barrier function and cleansing and detoxifying functions of the liver in healthy subjects. However, when the intestinal barrier function is disrupted, large amount of bacterial products can enter into the liver and systemic circulation and induce inflammation through their receptors. Nowadays, there have been various reports suggesting the role of gut flora and bacterial translocation in the pathogenesis of chronic liver disease and portal hypertension. This review summarizes the current knowledge about bacterial translocation and its contribution to the pathogenesis of chronic liver diseases and portal hypertension.
Antigens, CD14/metabolism
;
Bacterial Translocation
;
Gastrointestinal Tract/*microbiology
;
Humans
;
Hypertension, Portal/metabolism/*pathology
;
Liver/metabolism/*microbiology
;
Liver Cirrhosis/metabolism/*pathology
;
Receptors, Cytoplasmic and Nuclear/metabolism
;
Toll-Like Receptors/metabolism
2.Phenotypic and Functional Analysis of HL-60 Cells Used in Opsonophagocytic-Killing Assay for Streptococcus pneumoniae.
Kyung Hyo KIM ; Ju Young SEOH ; Su Jin CHO
Journal of Korean Medical Science 2015;30(2):145-150
Differentiated HL-60 is an effector cell widely used for the opsonophagocytic-killing assay (OPKA) to measure efficacy of pneumococcal vaccines. We investigated the correlation between phenotypic expression of immunoreceptors and phagocytic ability of HL-60 cells differentiated with N,N-dimethylformamide (DMF), all-trans retinoic acid (ATRA), or 1alpha, 25-dihydroxyvitamin D3 (VitD3) for 5 days. Phenotypic change was examined by flow cytometry with specific antibodies to CD11c, CD14, CD18, CD32, and CD64. Apoptosis was determined by flow cytometry using 7-aminoactinomycin D. Function was evaluated by a standard OPKA against serotype 19F and chemiluminescence-based respiratory burst assay. The expression of CD11c and CD14 gradually increased upon exposure to all three agents, while CD14 expression increased abruptly after VitD3. The expression of CD18, CD32, and CD64 increased during differentiation with all three agents. Apoptosis remained less than 10% until day 3 but increased after differentiation by DMF or ATRA. Differentiation with ATRA or VitD3 increased the respiratory burst after day 4. DMF differentiation showed a high OPKA titer at day 1 which sustained thereafter while ATRA or VitD3-differentiated cells gradually increased. Pearson analysis between the phenotypic changes and OPKA titers suggests that CD11c might be a useful differentiation marker for HL-60 cells for use in pneumococcal OPKA.
Antibodies, Bacterial/immunology
;
Antigens, CD11c/metabolism
;
Antigens, CD14/metabolism
;
Antigens, CD18/metabolism
;
Apoptosis/*immunology
;
Biological Assay
;
Cell Differentiation
;
Cell Line, Tumor
;
Cholecalciferol/pharmacology
;
Dimethylformamide/pharmacology
;
Flow Cytometry
;
HL-60 Cells
;
Humans
;
Phagocytosis/*immunology
;
Pneumococcal Vaccines/*immunology
;
Receptors, IgG/metabolism
;
Receptors, Immunologic/*biosynthesis
;
Respiratory Burst/immunology
;
Streptococcus pneumoniae/*immunology
;
Tretinoin/pharmacology
3.Phenotypic and Functional Analysis of HL-60 Cells Used in Opsonophagocytic-Killing Assay for Streptococcus pneumoniae.
Kyung Hyo KIM ; Ju Young SEOH ; Su Jin CHO
Journal of Korean Medical Science 2015;30(2):145-150
Differentiated HL-60 is an effector cell widely used for the opsonophagocytic-killing assay (OPKA) to measure efficacy of pneumococcal vaccines. We investigated the correlation between phenotypic expression of immunoreceptors and phagocytic ability of HL-60 cells differentiated with N,N-dimethylformamide (DMF), all-trans retinoic acid (ATRA), or 1alpha, 25-dihydroxyvitamin D3 (VitD3) for 5 days. Phenotypic change was examined by flow cytometry with specific antibodies to CD11c, CD14, CD18, CD32, and CD64. Apoptosis was determined by flow cytometry using 7-aminoactinomycin D. Function was evaluated by a standard OPKA against serotype 19F and chemiluminescence-based respiratory burst assay. The expression of CD11c and CD14 gradually increased upon exposure to all three agents, while CD14 expression increased abruptly after VitD3. The expression of CD18, CD32, and CD64 increased during differentiation with all three agents. Apoptosis remained less than 10% until day 3 but increased after differentiation by DMF or ATRA. Differentiation with ATRA or VitD3 increased the respiratory burst after day 4. DMF differentiation showed a high OPKA titer at day 1 which sustained thereafter while ATRA or VitD3-differentiated cells gradually increased. Pearson analysis between the phenotypic changes and OPKA titers suggests that CD11c might be a useful differentiation marker for HL-60 cells for use in pneumococcal OPKA.
Antibodies, Bacterial/immunology
;
Antigens, CD11c/metabolism
;
Antigens, CD14/metabolism
;
Antigens, CD18/metabolism
;
Apoptosis/*immunology
;
Biological Assay
;
Cell Differentiation
;
Cell Line, Tumor
;
Cholecalciferol/pharmacology
;
Dimethylformamide/pharmacology
;
Flow Cytometry
;
HL-60 Cells
;
Humans
;
Phagocytosis/*immunology
;
Pneumococcal Vaccines/*immunology
;
Receptors, IgG/metabolism
;
Receptors, Immunologic/*biosynthesis
;
Respiratory Burst/immunology
;
Streptococcus pneumoniae/*immunology
;
Tretinoin/pharmacology
4.Rhamnogalacturonan II is a Toll-like receptor 4 agonist that inhibits tumor growth by activating dendritic cell-mediated CD8+ T cells.
Sung Nam PARK ; Kyung Tae NOH ; Young Il JEONG ; In Duk JUNG ; Hyun Kyu KANG ; Gil Sun CHA ; Su Jung LEE ; Jong Keun SEO ; Dae Hwan KANG ; Tae Ho HWANG ; Eun Kyung LEE ; Byungsuk KWON ; Yeong Min PARK
Experimental & Molecular Medicine 2013;45(2):e8-
We evaluated the effectiveness of rhamnogalacturonan II (RG-II)-stimulated bone marrow-derived dendritic cells (BMDCs) vaccination on the induction of antitumor immunity in a mouse lymphoma model using EG7-lymphoma cells expressing ovalbumin (OVA). BMDCs treated with RG-II had an activated phenotype. RG-II induced interleukin (IL)-12, IL-1beta, tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) production during dendritic cell (DC) maturation. BMDCs stimulated with RG-II facilitate the proliferation of CD8+ T cells. Using BMDCs from the mice deficient in Toll-like receptors (TLRs), we revealed that RG-II activity is dependent on TLR4. RG-II showed a preventive effect of immunization with OVA-pulsed BMDCs against EG7 lymphoma. These results suggested that RG-II expedites the DC-based immune response through the TLR4 signaling pathway.
Acute-Phase Proteins/metabolism
;
Adaptor Proteins, Vesicular Transport/metabolism
;
Animals
;
Antigens, CD14/metabolism
;
Bone Marrow Cells/cytology/drug effects
;
CD8-Positive T-Lymphocytes/*immunology
;
Carrier Proteins/metabolism
;
Cell Differentiation/drug effects
;
Cell Nucleus/drug effects/metabolism
;
Cell Proliferation/drug effects
;
Cytokines/biosynthesis
;
Dendritic Cells/cytology/drug effects/enzymology/*immunology
;
Enzyme Activation/drug effects
;
Lymphocyte Activation/*drug effects
;
Membrane Glycoproteins/metabolism
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Mitogen-Activated Protein Kinases/metabolism
;
Myeloid Differentiation Factor 88/metabolism
;
NF-kappa B/metabolism
;
Neoplasms/immunology/*pathology
;
Pectins/*pharmacology
;
Phenotype
;
Protein Transport/drug effects
;
Receptors, Chemokine/metabolism
;
Signal Transduction/drug effects
;
T-Lymphocytes, Cytotoxic/cytology/drug effects
;
Toll-Like Receptor 4/*agonists/metabolism
5.TGF-beta1 inhibition of apoptosis through the transcriptional up-regulation of Bcl-X(L) in human monocytic leukemia U937 cells.
Ju Hie LEE ; Bum Joon PARK ; Jae Hoon PARK ; Moon Ho YANG ; Sung Gil CHI
Experimental & Molecular Medicine 1999;31(3):126-133
To characterize the TGF-beta1 response of monocytic leukemia cells, we analyzed the effects of TGF-beta1 on cell proliferation, differentiation, and apoptosis of human monoblastic U937 cells. Treatment of cells with TGF-beta1 in the absence of growth factors significantly enhanced cell viability. Flow cytometric analysis of DNA content and CD14 expression revealed that TGF-beta1 does not affect cell proliferation and differentiation. Consistent with these results was the finding that no transcriptional induction of Cdk inhibitors such as p21Waf1, p15Ink4b, and p27Kip1 was detected following TGF-beta1 treatment. Interestingly, however, pretreatment of TGF-beta1 significantly inhibited Fas-, DNA damage-, and growth factor deprivation-induced apoptosis. This antiapoptotic effect was totally abrogated by anti-TGF-beta1 antibody. Quantitative RT-PCR analysis demonstrated a dose- and time-dependent transcriptional up-regulation of Bcl-X(L), suggesting its implication in the TGF-1-mediated antiapoptotic pathway. We also observed elevated expression of c-Fos and PTEN/MMAC1. But, no detectable change was recognized in expression of c-Jun, Fas, Fadd, Fap-1, Bcl-2, and Bax. Taken together, our study shows that TGF-beta1 enhancement of cellular viability is associated with its antiapoptotic effect, which may result from the transcriptional up-regulation of Bcl-X(L).
Antigens, CD14/metabolism
;
Antigens, CD95/metabolism
;
Apoptosis/drug effects*
;
Cell Cycle/drug effects
;
Cell Differentiation/drug effects
;
Cell Division/drug effects
;
Cell Survival/drug effects
;
DNA/analysis
;
DNA Damage
;
Gene Expression Regulation, Neoplastic/genetics*
;
Genes, Suppressor, Tumor/genetics
;
Human
;
Leukemia, Myeloid/genetics
;
Neoplasm Proteins/metabolism
;
Phosphoric Monoester Hydrolases/genetics
;
Proto-Oncogene Proteins c-bcl-2/genetics
;
Proto-Oncogene Proteins c-bcl-2/biosynthesis*
;
RNA, Messenger/metabolism
;
Receptors, Antigen, T-Cell/genetics
;
Reverse Transcriptase Polymerase Chain Reaction
;
Signal Transduction
;
Transforming Growth Factor beta/pharmacology*
;
U937 Cells
;
Up-Regulation (Physiology)