1.Enhancement of urinary elimination of 3-bromobenzanthrone metabolites by oral supplementation of ascorbic acid in guinea pigs.
Ravindra P SINGH ; Raj KHANNA ; Subhash K KHANNA ; Mukul DAS
Biomedical and Environmental Sciences 2004;17(4):390-396
OBJECTIVE3-Bromobenzanthrone (3-BBA), an anthraquinone intermediate dye, is extensively used in textile industry. Since, our prior studies have shown that 3-BBA caused significant depletion of ascorbic acid (AsA) levels, the effect of exogenous supplementation of AsA on the urinary elimination of 3-BBA metabolites was investigated.
METHODGuinea pigs were treated with single oral dose of 3-BBA (50 mg/kg b. wt.) in groundnut oil while another group was treated with single oral dose of 3-BBA (50 mg/kg b. wt.) along with 3 day prior and post oral supplementation of AsA. Control groups were either treated with groundnut oil or AsA alone. Urine from individual animals was collected, extracted and analysed on HPTLC.
RESULTSThe highest elimination of 3-BBA (75 microg) was found to be in 0-24 h urine fraction which decreased to 18 microg and 5 microg in the two subsequent 24 hourly fractions of urine. Exogenous supplementation of AsA increased the total urinary elimination of 3-BBA by almost 77%. A total of 10 fluorescent metabolites excluding the parent compound were eliminated in the urine of guinea pigs treated with 3-BBA. Densitometric scanning of chromatogram showed different peaks at Rf 0.18, 0.22, 0.27, 0.34, 0.40, 0.48, 0.56, 0.66, 0.72, 0.80, and 0.95 which were eliminated and marked as urinary metabolite 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 respectively. AsA not only significantly enhanced the elimination of 3-BBA metabolites but also modified the pattern of metabolites drastically in 0-6 h, 6-24 h and 24-48 h urine fractions.
CONCLUSIONThese results indicate that AsA may be useful in protecting the toxicity of 3-BBA by fascilitating the urinary metabolite(s) excretion of 3-BBA.
Administration, Oral ; Animals ; Antioxidants ; pharmacology ; Ascorbic Acid ; pharmacology ; urine ; Benz(a)Anthracenes ; analysis ; metabolism ; Chromatography, High Pressure Liquid ; Guinea Pigs ; Lipid Peroxidation ; drug effects ; Plant Oils ; metabolism ; Time Factors
2.Effect of expression of c-jun N-terminal kinase on neuron autophagy following diffuse brain injury in rats.
Ming-yan HONG ; Jian-zhong CUI ; Ran LI ; Yan-xia TIAN ; Huan WANG ; Hai-tao WANG ; Jun-ling GAO
Chinese Journal of Surgery 2012;50(2):166-170
OBJECTIVETo study the effect and potential mechanism of expression of c-jun N-terminal kinase (JNK) signal pathway on neuron autophagy after diffuse brain injury (DBI).
METHODSMale Sprague Dawley rats (n = 216) were randomly divided into four groups: DBI group (n = 54), SP600125 intervene group (n = 54), DMSO group (n = 54) and sham operation group (n = 54). DBI rat model was established according to the description of Marmarou DBI. At different time points (1, 6, 12, 24, 48 and 72 h) after operation, the histopathologic changes of neurons in cortex were observed by HE staining method; The expression of p-JNK, p-P53, DRAM and Beclin-1 were detected by Western blot and immunohistochemistry.
RESULTSThe results showed that under light microscope degenerated and necrotic neurons were observed to be scattered in cortex at 6 h after operation in DBI group, but these changes were low in SP600125 intervene group. Compared with SP600125 intervene group, the expression of p-JNK in DBI group were enhanced obviously at 6, 12 and 24 h (F = 17.902, P < 0.05); the expression of p-P53 in DBI group were enhanced obviously at 12, 24, 48 and 72 h (F = 7.107, P < 0.05); the expression of DRAM in DBI group were enhanced obviously at 6, 12, 24, 48 and 72 h (F = 15.455, P < 0.05); the expression of Beclin-1 in DBI group were enhanced obviously at 6, 12, 24, 48 and 72 h (F = 11.517, P < 0.05). Compared with DBI group, the expression of p-JNK, p-P53, DRAM and Beclin-1 in DMSO group were similar at 1, 6, 12, 24, 48 and 72 h (F = 1.509, P > 0.05).
CONCLUSIONSThe present results indicate that SP600125 can dramatically improve trauma brain injury from autophagy after DBI and the molecular mechanism is related to the modulation of JNK signal pathway following DBI, while it measures the neuron autophagy by means of intervening JNK signal pathway.
Animals ; Anthracenes ; pharmacology ; Autophagy ; Brain Injuries ; metabolism ; pathology ; Disease Models, Animal ; JNK Mitogen-Activated Protein Kinases ; metabolism ; Male ; Neurons ; pathology ; Rats ; Rats, Sprague-Dawley
3.Protective effects and mechanism of SP600125 on lung ischemia/reperfusion injury in rats.
Xiao-xiao QIU ; Yong-yue DAI ; Zhang-juan SONG ; Zhou-xi FANG ; Wan-tie WANG
Chinese Journal of Applied Physiology 2012;28(3):255-258
OBJECTIVETo investigate the protective effects and mechanism of SP600125-specificity inhibitor of c-Jun N-terminal kinase (JNK)on lung ischemia /reperfusion injury in rats.
METHODSThe unilateral lung ischemia/reperfusion model was replicated in vivo. Rats were randomly divided into three groups (n = 10): control group, ischemia/reperfusion group ( I/R group) and ischemia/reperfusion + SP600125 group (SP600125 group). The lung tissues sampled at the end of each experiment were assayed for wet/dry weight ratio (W/D),the injured alveoli rate (IAR), the expression of phosphorylation JNK (p-JNK) and JNK protein were detected by Western blot, the expression of Bcl-2, Bax, Caspase3 protein were detected by immunocytochemistry techniques, the pneumocyte apoptosis index (AI) was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end abeling(TUNEL), the ultrastructure changes were observed under electron microscope.
RESULTSCompared to I/R group, the expression of p-JNK, Bcl-2, Bax and caspase-3 protein were markedly decreased (all P < 0.01), the expression of Bcl-2 protein and the ratio of Bcl-2/Bax were markedly increased in SP600125 group(all P < 0.01). The value of AI, W/D, IAR showed significantly lower than those in I/R group (all P <0.01). Meanwhile, light morphological and ultrastructure injury were found in SP600125 group.
CONCLUSIONSP600125 can suppress JNK signal pathway, up-regulate the ratio of Bcl-2/Bax to inhibit Caspase-3 dependent apoptosis, so that it protects lung tissue from ischemia/reperfusion injury.
Animals ; Anthracenes ; pharmacology ; Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Lung ; blood supply ; metabolism ; pathology ; MAP Kinase Signaling System ; Phosphorylation ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Rats ; Rats, Wistar ; Reperfusion Injury ; metabolism ; pathology ; bcl-2-Associated X Protein ; metabolism
4.Role of JNK signaling pathway in chondrocyte apoptosis induced by nitric oxide.
Xi-bin KAO ; Yan GAO ; Jing-hong CHEN ; Qun CHEN ; Zhi-lun WANG ; Zhou WANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2013;31(4):271-275
OBJECTIVETo study the role of c-jun N-terminal kinase (JNK) signaling pathway in chondrocyte apoptosis induced by nitric oxide (NO) using NO donor sodium nitroprusside (SNP) and JNK inhibitor SP600125.
METHODSArticular chondrocytes were separated from New Zealand rabbits aged 3 weeks by mechanical digestion and enzyme digestion and identified by toluidine blue staining, and then the chondrocytes were treated with SNP and SP600125 for 24 h. The cell apoptosis was evaluated by Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) flow cytometry and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL), and the expression levels of nuclear factor-kappa B (NF-κB) p65 and p53 were measured by western blot.
RESULTSCompared with those in control group, the early apoptotic rate of SNP-treated chondrocytes increased as the concentration of SNProse, exhibiting a concentration dependency (P < 0.05), and the expression levels of NF-κB p65 and p53 also increased (P < 0.05); JNK inhibitor SP600125 inhibited these increases (P < 0.05).
CONCLUSIONJNK signaling pathway plays an important role in NO-induced chondrocyte apoptosis. JNK inhibitor SP600125 can reduce NO-induced apoptosis and expression of NF-κB p65 and p53 in articular chondrocytes of rabbits in a concentration-dependent manner.
Animals ; Anthracenes ; pharmacology ; Apoptosis ; drug effects ; Cells, Cultured ; Chondrocytes ; drug effects ; metabolism ; pathology ; MAP Kinase Signaling System ; drug effects ; NF-kappa B ; metabolism ; Nitric Oxide ; pharmacology ; Rabbits ; Transcription Factor RelA ; metabolism ; Tumor Suppressor Protein p53 ; metabolism
5.Effect of staurosporine induced apoptosis of MCF7/GFP-Bax stable cell line on Bax translocation from cytosol into mitochondria.
Acta Pharmaceutica Sinica 2008;43(4):378-382
To investigate Bax translocation from cytosol into mitochondria induced by staurosporine (STS) in GFP-Bax-tagged MCF7 stable cell line, the viability was measured by MTT method. Bax translocation from cytosol into mitochondria was investigated under the fluorescence microscope. The dose-effect and time-course relationships were also observed and the percentage of GFP-Bax punctuate cells were calculated. Immunofluoresence method was used to observe Bax translocation to mitochondria, Cyt-c release from mitochondria and Annexin V label. The TMRE assay was used to investigate membrane pertential (Deltapsim) and function of mitochondria. Western blotting was used to observe the mechanism of apoptosis induced by STS. The results showed that STS can induce Bax translocation from cytoplasm to mitochondria, Cyt-c release from mitochondria and Annexin V label. The Western blotting analysis presented the inhibitory effect on apoptosis induced by STS of SP600125 which is a specific JNK inhibitor. The study revealed the mechanism of STS induced apoptosis associated with JNK activated pathway.
Anthracenes
;
pharmacology
;
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
Cytochromes c
;
metabolism
;
Cytosol
;
metabolism
;
Humans
;
MAP Kinase Kinase 4
;
antagonists & inhibitors
;
Membrane Potentials
;
drug effects
;
Mitochondria
;
metabolism
;
Protein Transport
;
drug effects
;
Staurosporine
;
pharmacology
;
bcl-2-Associated X Protein
;
metabolism
6.Apoptosis induced by NNAMB, a novel polyamine conjugate, in human erythroleukemia K562 cells and its mechanism.
Song-Qiang XIE ; Ying-Liang WU ; Guang-Chao LIU ; Peng-Fei CHENG ; Min-Wei WANG ; Yuan-Fang MA ; Jin ZHAO ; Chao-Jie WANG
Chinese Journal of Oncology 2008;30(7):490-493
OBJECTIVETo investigate the apoptosis-inducing effects of NNAMB, a novel polyamine conjugate, in erythroleukemia K562 cells and its molecular mechanism.
METHODSCell viability was assessed by MTT assay and trypan blue dye exclusion method. The cell morphology was observed by fluorescence microscopy. The cell cycle distribution, apoptosis and mitochondrial membrane potential were measured by flow cytometry. The expression of caspase-3, -8, -9, cytochrome c in the K562 cells was detected by Western blot.
RESULTSNNAMB inhibited the proliferation of K562 cells. The cells treated with NNAMB showed a typical apoptotic morphology, Sub-G1 peak and loss of mitochondrial membrane potential. Western blot assay showed that NNAMB increased the expression of caspase-3, -9, cytochrome c but not caspase-8 in a dose-and time-dependent manner.
CONCLUSIONNNAMB induces apoptosis via mitochondrial pathway in K562 cells.
Anthracenes ; pharmacology ; Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Caspase 8 ; metabolism ; Caspase 9 ; metabolism ; Cell Cycle ; drug effects ; Cell Proliferation ; drug effects ; Cytochromes c ; metabolism ; Humans ; K562 Cells ; Membrane Potential, Mitochondrial ; drug effects ; Polyamines ; pharmacology ; Spermidine ; analogs & derivatives ; pharmacology
7.Amelioration of insulin resistance after scald by c-Jun N-terminal kinase inhibitor in rat.
Xin-long CHEN ; Zhao-fan XIA ; Duo WEI ; Dao-feng BEN ; Hong-tai TANG ; Sheng-de GE
Chinese Journal of Burns 2006;22(6):466-468
OBJECTIVETo investigate the role and mechanism of c-Jun N-terminal kinase (JNk) inhibitor (SP600125) in amelioration of insulin resistance after scald.
METHODSTwenty-four Sprague-Dawley rats were randomized into sham (the process of scald was mimicked by water at room temperature) , scald, scald and SP600125 groups. The rats were inflicted with 30% TBSA full-thickness scald in the latter two groups. Euglycemic-hyperinsulinemic glucose clamp experiment was carried out 4 days after scald. SP600125 was administered to the rats in scald and SP600125 2 hrs before Euglycemic-hyperinsulinemic glucose clamp was performed. Changes in the phospho-Serine307 and phospho-tyrosine of IRS-1 activity, as well as expression of phospho-JNK in muscles were determined.
RESULTSEuglycemic-Hyperinsulinemic Glucose Clamps experiment showed that the infusion rate of 100 g/L glucose in sham, scald, scald and SP600125 groups were (12. 33 +/-0. 42) , (6. 61 +/-0. 27) , (11. 11 +/-0. 68) mgx kg(-1) x min(-1) , respectively ( P <0.01). The level of IRS-1 Serine307 phosphorylation and JNK activity in muscles were significantly increased, while insulin-induced tyrosine phosphorylation of IRS-1 decreased markedly after scald. Compared with scald group, the level of IRS-1 Serine307 phosphorylation and JNK activity in scald and SP600125 group were decreased but tyrosine phosphorylation was elevated.
CONCLUSIONSP600125 can partially ameliorate insulin resistance after scald by inhibition of JNK activation, and decrease the level of IRS-1 phospho-serine307.
Animals ; Anthracenes ; pharmacology ; Burns ; complications ; metabolism ; Hyperinsulinism ; etiology ; Insulin ; metabolism ; Insulin Receptor Substrate Proteins ; metabolism ; Insulin Resistance ; JNK Mitogen-Activated Protein Kinases ; antagonists & inhibitors ; Phosphorylation ; Protein Kinase Inhibitors ; pharmacology ; Rats ; Rats, Sprague-Dawley
8.JNK phosphorylation promotes degeneration of cervical endplate chondrocytes through down-regulation of the expression of ANK in humans.
Hong-guang XU ; Jun-xing SONG ; Jia-feng CHENG ; Ping-zhi ZHANG ; Hong WANG ; Ping LIU ; Kun LÜ ; Min ZHONG
Chinese Medical Journal 2013;126(11):2067-2073
BACKGROUNDC-Jun N-terminal kinase (JNK) signaling pathway and ankylosis gene (ANK) play a critical role in endplate chondrocytes degeneration. The purpose of this study was to investigate whether the expression levels of ANK was associated with the activation of JNK.
METHODSCartilage endplates of 49 patients were divided into the control group (n = 19) and the experimental group (n = 30). The patients in the control group were graded 0 and those in the experimental group were graded I-III according to Miller's classification. Endplate chondrocytes were isolated by enzyme digestion and cultured in vitro. The inverted phase contrast microscope, teluidine blue staining, HE staining, real time RT-PCR, and MTT were used to observe morphological appearances, biological characteristics, and growth curve of endplate chondrocytes from the cartilage endplate of the two groups. Real time RT-PCR and Western blotting were used to analyze the mRNA and protein expression levels of associated factors in the degeneration process in the cultured endplate chondrocytes with or without subjected SP600125.
RESULTSThe expression levels of type II collagen, aggrecan, and ANK in endplate chondrocytes of experimental group were lower than that of control group and phosphorylation level of JNK in the experimental group which was higher than that in the control group. Application of JNK phosphorylation inhibitor to degeneration chondrocytes resulted in a marked decrease in the phosphorylation level of JNK and a significant increase in the expression levels of type II collagen, aggrecan, and ANK.
CONCLUSIONThe degeneration of the human cervical endplate chondrocytes might be promoted by JNK phosphorylation by down-regulating the expression of ANK.
Adult ; Aged ; Anthracenes ; pharmacology ; Cells, Cultured ; Cervical Vertebrae ; metabolism ; pathology ; Chondrocytes ; metabolism ; pathology ; Down-Regulation ; Female ; Humans ; JNK Mitogen-Activated Protein Kinases ; metabolism ; Male ; Middle Aged ; Phosphate Transport Proteins ; genetics ; physiology ; Phosphorylation
9.Inhibition of c-Jun N-terminal Kinase Signaling Pathway Alleviates Lipopolysaccharide-induced Acute Respiratory Distress Syndrome in Rats.
Jian-Bo LAI ; Chun-Fang QIU ; Chuan-Xi CHEN ; Min-Ying CHEN ; Juan CHEN ; Xiang-Dong GUAN ; Bin OUYANG
Chinese Medical Journal 2016;129(14):1719-1724
BACKGROUNDAn acute respiratory distress syndrome (ARDS) is still one of the major challenges in critically ill patients. This study aimed to investigate the effect of inhibiting c-Jun N-terminal kinase (JNK) on ARDS in a lipopolysaccharide (LPS)-induced ARDS rat model.
METHODSThirty-six rats were randomized into three groups: control, LPS, and LPS + JNK inhibitor. Rats were sacrificed 8 h after LPS treatment. The lung edema was observed by measuring the wet-to-dry weight (W/D) ratio of the lung. The severity of pulmonary inflammation was observed by measuring myeloperoxidase (MPO) activity of lung tissue. Moreover, the neutrophils in bronchoalveolar lavage fluid (BALF) were counted to observe the airway inflammation. In addition, lung collagen accumulation was quantified by Sircol Collagen Assay. At the same time, the pulmonary histologic examination was performed, and lung injury score was achieved in all three groups.
RESULTSMPO activity in lung tissue was found increased in rats treated with LPS comparing with that in control (1.26 ± 0.15 U in LPS vs. 0.77 ± 0.27 U in control, P < 0.05). Inhibiting JNK attenuated LPS-induced MPO activity upregulation (0.52 ± 0.12 U in LPS + JNK inhibitor vs. 1.26 ± 0.15 U in LPS, P < 0.05). Neutrophils in BALF were also found to be increased with LPS treatment, and inhibiting JNK attenuated LPS-induced neutrophils increase in BALF (255.0 ± 164.4 in LPS vs. 53 (44.5-103) in control vs. 127.0 ± 44.3 in LPS + JNK inhibitor, P < 0.05). At the same time, the lung injury score showed a reduction in LPS + JNK inhibitor group comparing with that in LPS group (13.42 ± 4.82 vs. 7.00 ± 1.83, P = 0.001). However, the lung W/D ratio and the collagen in BALF did not show any differences between LPS and LPS + JNK inhibitor group.
CONCLUSIONSInhibiting JNK alleviated LPS-induced acute lung inflammation and had no effects on pulmonary edema and fibrosis. JNK inhibitor might be a potential therapeutic medication in ARDS, in the context of reducing lung inflammatory.
Animals ; Anthracenes ; therapeutic use ; Collagen ; metabolism ; JNK Mitogen-Activated Protein Kinases ; antagonists & inhibitors ; metabolism ; Lipopolysaccharides ; toxicity ; Lung ; drug effects ; metabolism ; pathology ; Male ; Rats ; Respiratory Distress Syndrome, Adult ; chemically induced ; drug therapy ; Signal Transduction ; drug effects
10.Involvement of JNK-initiated p53 accumulation and phosphorylation of p53 in pseudolaric acid B induced cell death.
Xianfeng GONG ; Minwei WANG ; Shin ichi TASHIRO ; Satoshi ONODERA ; Takashi IKEJIMA
Experimental & Molecular Medicine 2006;38(4):428-434
A terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay was used to determine that apoptosis causes HeLa cell death induced by pseudolaric acid B. The c-Jun N-terminal kinase (JNK) inhibitor SP600125 decreased p53 protein expression during exposure to pseudolaric acid B. SP600125 decreased the phosphorylation of p53 during pseudolaric acid B exposure, indicating that JNK mediates phosphorylation of p53 during the response to pseudolaric acid B. SP600125 reversed pseudolaric acid B-induced down-regulation of phosphorylated extracellular signal-regulated protein kinase (ERK), and protein kinase C (PKC) was activated by pseudolaric acid B, whereas staurosporine, calphostin C, and H7 partly blocked this effect. These results indicate that p53 is partially regulated by JNK in pseudolaric acid B-induced HeLa cell death and that PKC participates in pseudolaric acid B-induced HeLa cell death.
Tumor Suppressor Protein p53/metabolism/*physiology
;
Protein Kinase C/metabolism
;
Phosphorylation
;
JNK Mitogen-Activated Protein Kinases/*physiology
;
Humans
;
Hela Cells
;
Diterpenes/*pharmacology
;
DNA Fragmentation/drug effects
;
Cell Death/*drug effects
;
Anthracenes/pharmacology