1.Anti-inflammatory and membrane stabilizing properties of methyl jasmonate in rats.
Solomon UMUKORO ; Akinyinka Oladipo ALABI ; Anthony Taghogho EDUVIERE ; Abayomi Mayowa AJAYI ; Oluwafemi Gabriel OLUWOLE
Chinese Journal of Natural Medicines (English Ed.) 2017;15(3):202-209
The present investigation was carried out to evaluate anti-inflammatory and membrane stabilizing properties of methyl jasmonate (MJ) in experimental rat models of acute and chronic inflammation. The effects of MJ on acute inflammation were assessed using carrageenan-induced rat's paw edema model. The granuloma air pouch model was employed to evaluate the effects of MJ on chronic inflammation produced by carrageenan in rats. The number of white blood cells (WBC) in pouch exudates was estimated using light microscopy. The levels of biomarkers of oxidative stress, such as malondialdehyde (MDA), glutathione (GSH) and activity of antioxidant enzymes in the exudates, were determined using spectrophotometry. The membrane stabilizing property of MJ was assessed based on inhibition of hemolysis of rat red blood cells (RBC) exposed to hypotonic medium. Our results indicated that MJ (25-100 mg·kg, i.p.) produced significant anti-inflammatory activity in carrageenan-induced paw edema in rats (P < 0.05). MJ reduced the volume of pouch exudates and the number of WBC in carrageenan-induced granulomatous inflammation. It also exhibited potent antioxidant and membrane stabilizing activities. In conclusion, these findings suggest the therapeutic potentials of methyl jasmonate in disease conditions associated with inflammation and its anti-inflammatory activity may be related to its antioxidant and membrane stabilizing activities.
Acetates
;
administration & dosage
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
Cell Membrane
;
chemistry
;
drug effects
;
immunology
;
Cyclopentanes
;
administration & dosage
;
Disease Models, Animal
;
Edema
;
drug therapy
;
immunology
;
Erythrocytes
;
chemistry
;
drug effects
;
Glutathione
;
immunology
;
Humans
;
Male
;
Malondialdehyde
;
immunology
;
Oxylipins
;
administration & dosage
;
Plant Extracts
;
administration & dosage
;
Rats
;
Rats, Wistar
2.Minocycline Attenuated Depressive-Like Phenotype in SleepDeprived Mice via its Antioxida
Anthony Taghogho Eduviere ; Kesiena Emmanuel Edje ; Lily Oghenevovwero Otomewo ; Elizabeth Toyin Akinluyi ; Juliet Nneda Olayinka ; Chukwuka Daniel Uka
Malaysian Journal of Medicine and Health Sciences 2023;19(No.3):296-301