1.Cloning, prokaryotic expression, and functional validation of flavonoid 3-O-glycosyltransferase gene (Rh3GT) from Rhododendron hybridum Hort.
Yicheng YAN ; Zehang WU ; Yuhang JIANG ; Gaoyuan HU ; Yujie YANG ; Xiaohong XIE ; Yueyan WU ; Yonghong JIA
Chinese Journal of Biotechnology 2025;41(2):881-895
Flavonoid 3-O-glucosyltransferase (3GT) is a key enzyme in the glucosidation of anthocyanins. To investigate the 3GT gene in rhododendron, we cloned an open reading frame (ORF) of 3GT gene (named Rh3GT) from Rhododendron hybridum Hort (Red cultivar) and then characterized this gene and the deduced protein in terms of the biochemical characteristics, expression level, and enzymatic function. The results showed that Rh3GT had a full length of 993 bp and encoded 330 amino acid residues. The deduced protein was hydrophilic, stable, weak acid, belonging to the glycosyltransferase family (GT-B type), with glutamine (Q) at position 44 in the PSPG box. The phylogenetic analysis showed that Rh3GT was most closely related to Vc3GT from Vaccinium corymbosum and Vm3GT from Vaccinium myrtillus. Rh3GT was expressed in the stems, leaves, and flowers and almost not expressed in the roots, with the highest expression level in petals during full blooming stage. Introduction of pCAMBIAL1302-Rh3GT into petals significantly up-regulated the expression level of Rh3GT and increased the total anthocyanin accumulation. Rh3GT was successfully expressed in Escherichia coli BL21 in the form of inclusion bodies with a size of about 36 kDa. The results of HPLC showed that the recombinant Rh3GT after denaturation, purification, and dilution could catalyze the synthesis of cyanidin and UDP-glucose to synthesize cyanidin 3-O-glucoside, indicating that the expressed protein had 3GT activity. This study provides basic data for further studying the molecular regulation mechanism of anthocyanin biosynthesis and theoretical support for molecular breeding of rhododendron.
Rhododendron/classification*
;
Glucosyltransferases/metabolism*
;
Cloning, Molecular
;
Escherichia coli/metabolism*
;
Recombinant Proteins/biosynthesis*
;
Anthocyanins/biosynthesis*
;
Phylogeny
;
Plant Proteins/metabolism*
;
Amino Acid Sequence
2.Functions of MdTINY, a member of the apple dehydration responsive element binding-A4.
Haiyuan ZHANG ; Xun WANG ; Qing WANG ; Chunxiang YOU
Chinese Journal of Biotechnology 2024;40(11):4183-4197
The dehydration responsive element binding (DREB) transcription factors play an important role in plant growth and development and are extensively involved in plant responses to abiotic stress. The DREB family contains six subfamilies, and TINY belongs to the DREB-A4 subfamily. The Arabidopsis thaliana TINY gene, AtTINY, plays a role in regulating plant growth and responses to stress. In order to investigate the evolutionary characterization of the DREB-A4 subfamily and the biological function of the MdTINY gene in apple (Malus domestica), in this study, we used the databases GDDH13 and TAIR and online tools (Expasy and WoLF PSORT) to study the biological information of the DREB-A4 subfamily in apple. In addition, the tertiary structures of the proteins were predicted. The apple DREB-A4 subfamily contained 22 genes, all of which had a conserved AP2 domain, and subcellular localization predictions showed that DREB-A4 subfamily proteins were mainly located in the nucleus. The transgenic calli of MdTINY were obtained by the Agrobacterium-mediated transformation method, and the main biological functions of MdTINY were explored by quantitative real-time PCR (qRT-PCR) combined with anthocyanin content determination. MdTINY shared the highest amino acid sequence similarity with AtTINY. The coding region of MdTINY had a full length of 759 bp, encoding 252 amino acid residues. Analysis of the promoter elements and expression patterns indicated that MdTINY was responsive to light and multiple stress conditions. MdTINY was localized in the nucleus and had transcriptional autoactivation activity. The overexpression of MdTINY in calli inhibited normal growth and promoted anthocyanoside accumulation. These results indicated that MdTINY negatively regulated apple plant growth and promoted fruit coloring, providing a candidate gene for the breeding of apple varieties with high quality of fruit color.
Malus/metabolism*
;
Plant Proteins/metabolism*
;
Transcription Factors/metabolism*
;
Gene Expression Regulation, Plant
;
Plants, Genetically Modified/genetics*
;
Stress, Physiological
;
Anthocyanins/metabolism*
3.Cloning and functional analysis of flavanone 3-hydroxylase gene in Rhododendron hybridum Hort.
Baoxin JIANG ; Zehang WU ; Guoxia YANG ; Sijia LÜ ; Yonghong JIA ; Yueyan WU ; Ruoyi ZHOU ; Xiaohong XIE
Chinese Journal of Biotechnology 2023;39(2):653-669
Flavanone 3-hydroxylase (F3H) is a key enzyme in the synthesis of phycocyanidins. In this experiment, the petals of red Rhododendron hybridum Hort. at different developmental stages were used as experimental materials. The R. hybridum flavanone 3-hydroxylase (RhF3H) gene was cloned using reverse transcription PCR (RT-PCR) and rapid-amplification of cDNA ends (RACE) techniques, and bioinformatics analyses were performed. Petal RhF3H gene expression at different developmental stages were analyzed by using quantitative real-time polymerase chain reaction (qRT-PCR). A pET-28a-RhF3H prokaryotic expression vector was constructed for the preparation and purification of RhF3H protein. A pCAMBIA1302-RhF3H overexpression vector was constructed for genetic transformation in Arabidopsis thaliana by Agrobacterium-mediated method. The results showed that the R. hybridum Hort. RhF3H gene is 1 245 bp long, with an open reading frame of 1 092 bp, encoding 363 amino acids. It contains a Fe2+ binding motif and a 2-ketoglutarate binding motif of the dioxygenase superfamily. Phylogenetic analysis showed that the R. hybridum RhF3H protein is most closely related to the Vaccinium corymbosum F3H protein. qRT-PCR analysis showed that the expression level of the red R. hybridum RhF3H gene tended to increase and then decrease in the petals at different developmental stages, with the highest expression at middle opening stage. The results of the prokaryotic expression showed that the size of the induced protein of the constructed prokaryotic expression vector pET-28a-RhF3H was about 40 kDa, which was similar to the theoretical value. Transgenic RhF3H Arabidopsis thaliana plants were successfully obtained, and PCR identification and β-glucuronidase (GUS) staining demonstrated that the RhF3H gene was integrated into the genome of A. thaliana plants. qRT-PCR, total flavonoid and anthocyanin contentanalysis showed that RhF3H was significantly higher expressed in the transgenic A. thaliana relative to that of the wild type, and its total flavonoid and anthocyanin content were significantly increased. This study provides a theoretical basis for investigating the function of RhF3H gene, as well as for studying the molecular mechanism of flower color in R. simsiib Planch.
Arabidopsis/metabolism*
;
Rhododendron/metabolism*
;
Amino Acid Sequence
;
Anthocyanins/metabolism*
;
Phylogeny
;
Flavonoids/metabolism*
;
Cloning, Molecular
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
4.Protective Effects of Anthocyanins Extracted from Vaccinium Uliginosum on 661W Cells Against Microwave-Induced Retinal Damage.
Lan YIN ; Si-Jun FAN ; Mao-Nian ZHANG
Chinese journal of integrative medicine 2022;28(7):620-626
OBJECTIVE:
To study the protective effect of anthocyanins extracted from Vaccinium Uliginosum (VU) on retinal 661W cells against microwave radiation induced retinal injury.
METHODS:
661W cells were divided into 6 groups, including control, model [661W cells radiated by microwave (30 mW/cm2, 1 h)] and VU groups [661W cells pretreated with anthocyanins extracted from VU (25, 50, 100 and 200 µg/mL, respectively) for 48 h, and radiated by microwave 30 mW/cm2, 1 h]. After treatment with different interventions, the cell apoptosis index (AI) was determined using Heochst staining; contents of malonaldehyde (MDA), glutataione (GSH), and activity of superoxide dismutase (SOD) were measured. mRNA expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1(HO-1) were detected by real time quantitative polymerase chain reaction, and the expression of HO-1 protein was examined by Western blot analysis. Nucleus and cytoplasm were separated and Nrf2 protein expression was further verified by Western blot analysis.
RESULTS:
There was significant difference in AI among the groups (F=322.83, P<;0.05). Compared with the control group, AI was significantly higher in the model group and was lower in 4 VU-pretreated groups (P<;0.05). Linear regression analysis showed the decline of AI was in a dose-dependent manner with VU treatment (r=0.8419, P<;0.05). The MDA and GSH contents of 661W cells in VU-treated groups were significantly lower than the model group (P<;0.05). Compared with the model group, the SOD activity in the VU-treated groups (50, 100 and 200 µg/mL) was significantly higher (all P<;0.05). The Nrf2 and HO-1 mRNA expressions were slightly increased after irradiation, and obviously increased in 100 µg/mL VU-treated group. After irradiation, the relative expressions of HO-1 and Nrf2 proteins in nucleus were slightly increased (P<;0.05), and the changes in cytoplasm were not obvious, whereas it was significantly increased in both nucleus and cytoplasm in the VU treatment groups.
CONCLUSIONS
Anthocyanins extracted from VU could reduce apoptosis, stabilize cell membrane, and alleviate oxidant injury of mouse retinal photoreceptor 661W cells. The mechanism might be through activating Nrf2/HO-1 signal pathway and inducing HO-1 transcription and translation.
Animals
;
Anthocyanins/therapeutic use*
;
Blueberry Plants/metabolism*
;
Heme Oxygenase-1/metabolism*
;
Mice
;
Microwaves
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress
;
RNA, Messenger/metabolism*
;
Superoxide Dismutase/metabolism*
5.Cloning, structure analysis and functional verification of MYB10 in Ribes L.
Qiuying FENG ; Xue LIU ; Linlin YANG ; Zeyuan FU ; Qijiang XU
Chinese Journal of Biotechnology 2022;38(1):275-286
This study aims to investigate the molecular mechanism of the transcription factor MYB10, which is involved in anthocyanin biosynthesis, in different colors of Ribes L. fruitification. Rapid amplification of cDNA ends (RACE) was used to clone the MYB10 genes from Ribes nigrum L. (RnMYB10), Ribes rubrum L. (RrMYB10), and Ribes album L. (RaMYB10), respectively. Phylogenetic analysis showed that RnMYB10 and RrMYB10 were evolutionarily homologous. Real-time quantitative PCR (RT-qPCR) showed that the expression of MYB10 in the fruits of Ribes nigrum L. was higher than that of Ribes rubrum L. and much higher than that of Ribes album L. The expression of RnMYB10 and RrMYB10 increased at first and then decreased as the fruit diameter increased and the fruit color deepened (the maximum expression level was reached at 75% of the fruit color change), while the expression level of RaMYB10 was very low. Overexpression of RnMYB10 and RrMYB10 in Arabidopsis thaliana resulted in purple petioles and leaves, whereas overexpression of RaMYB10 resulted in no significant color changes. This indicates that MYB10 gene plays an important role in the coloration of Ribes L. fruit.
Anthocyanins
;
Cloning, Molecular
;
Fruit
;
Gene Expression Regulation, Plant
;
Phylogeny
;
Plant Proteins/metabolism*
;
Ribes/genetics*
6.Advances in the molecular regulation of anthocyanins in solanaceous vegetables.
Huiqin YANG ; Jiali WANG ; Sirui LI ; Yi NIU ; Qinglin TANG ; Dayong WEI ; Yongqing WANG ; Zhimin WANG
Chinese Journal of Biotechnology 2022;38(5):1738-1752
Anthocyanins are widely distributed water-soluble pigments that not only give the fruit colorful appearances, but also are important sources of natural edible pigments. In recent years, the interest on anthocyanins of solanaceous vegetables is increasing. This paper summarized the structure of anthocyanins and its biosynthetic pathway, the structural genes and regulatory genes involved in the biosynthesis of anthocyanins in solanaceous vegetables, as well as the environmental factors affecting the biosynthesis. This review may help clarify the synthesis and regulation mechanism of anthocyanins in solanaceous vegetables and make better use of anthocyanins for quality breeding of fruit colors.
Anthocyanins/metabolism*
;
Fruit/genetics*
;
Gene Expression Regulation, Plant
;
Plant Breeding
;
Vegetables/genetics*
7.Comparative metabolomics provides novel insights into the basis of petiole color differences in celery (Apiumgraveolens L.).
Mengyao LI ; Jie LI ; Haohan TAN ; Ya LUO ; Yong ZHANG ; Qing CHEN ; Yan WANG ; Yuanxiu LIN ; Yunting ZHANG ; Xiaorong WANG ; Haoru TANG
Journal of Zhejiang University. Science. B 2022;23(4):300-314
Plant metabolites are important for plant development and human health. Plants of celery (Apiumgraveolens L.) with different-colored petioles have been formed in the course of long-term evolution. However, the composition, content distribution, and mechanisms of accumulation of metabolites in different-colored petioles remain elusive. Using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), 1159 metabolites, including 100 lipids, 72 organic acids and derivatives, 83 phenylpropanoids and polyketides, and several alkaloids and terpenoids, were quantified in four celery cultivars, each with a different petiole color. There were significant differences in the types and contents of metabolites in celery with different-colored petioles, with the most striking difference between green celery and purple celery, followed by white celery and green celery. Annotated analysis of metabolic pathways showed that the metabolites of the different-colored petioles were significantly enriched in biosynthetic pathways such as anthocyanin, flavonoid, and chlorophyll pathways, suggesting that these metabolic pathways may play a key role in determining petiole color in celery. The content of chlorophyll in green celery was significantly higher than that in other celery cultivars, yellow celery was rich in carotenoids, and the content of anthocyanin in purple celery was significantly higher than that in the other celery cultivars. The color of the celery petioles was significantly correlated with the content of related metabolites. Among the four celery cultivars, the metabolites of the anthocyanin biosynthesis pathway were enriched in purple celery. The results of quantitative real-time polymerase chain reaction (qRT-PCR) suggested that the differential expression of the chalcone synthase (CHS) gene in the anthocyanin biosynthesis pathway might affect the biosynthesis of anthocyanin in celery. In addition, HPLC analysis revealed that cyanidin is the main pigment in purple celery. This study explored the differences in the types and contents of metabolites in celery cultivars with different-colored petioles and identified key substances for color formation. The results provide a theoretical basis and technical support for genetic improvement of celery petiole color.
Anthocyanins
;
Apium/metabolism*
;
Chlorophyll/metabolism*
;
Color
;
Gene Expression Regulation, Plant
;
Humans
;
Metabolomics
;
Plant Proteins/genetics*
;
Tandem Mass Spectrometry
8.Expression profiling and functional verification of flavonoid 3'-hydroxylase gene from leaves of Euryale ferox.
Zong-Hui JING ; Meng-Jiao YIN ; Qian WANG ; Ke BAO ; Pei-Na ZHOU ; Chan-Chan LIU ; Qi-Nan WU
China Journal of Chinese Materia Medica 2021;46(18):4712-4720
Leaves of Euryale ferox are rich in anthocyanins. Anthocyanin synthesis is one of the important branches of the flavonoid synthesis pathway, in which flavonoid 3'-hydroxylase(F3'H) can participate in the formation of important intermediate products of anthocyanin synthesis. According to the data of E. ferox transcriptome, F3'H cDNA sequence was cloned in the leaves of E. ferox and named as EfF3'H. The correlation between EfF3'H gene expression and synthesis of flavonoids was analyzed by a series of bioinforma-tics tools and qRT-PCR. Moreover, the biological function of EfF3'H was verified by the heterologous expression in yeast. Our results showed that EfF3'H comprised a 1 566 bp open reading frame which encoded a hydrophilic transmembrane protein composed of 521 amino acid residues. It was predicted to be located in the plasma membrane. Combined with predictive analysis of conserved domains, this protein belongs to the cytochrome P450(CYP450) superfamily. The qRT-PCR results revealed that the expression level of EfF3'H was significantly different among different cultivars and was highly correlated with the content of related flavonoids in the leaves. Eukaryotic expression studies showed that EfF3'H protein had the biological activity of converting kaempferol to quercetin. In this study, EfF3'H cDNA was cloned from the leaves of E. ferox for the first time, and the biological function of the protein was verified. It provi-ded a scientific basis for further utilizing the leaves of E. ferox and laid a foundation for the further analysis of the biosynthesis pathway of flavonoids in medicinal plants.
Anthocyanins
;
Cytochrome P-450 Enzyme System/metabolism*
;
Plant Leaves/metabolism*
;
Plant Proteins/metabolism*
;
Transcriptome
9.Progress in the genetic modification of blue flowers based on anthocyanin metabolism.
Jianfang GAO ; Liping KE ; Yuqiang SUN
Chinese Journal of Biotechnology 2020;36(4):678-692
As water-soluble, natural pigments, anthocyanins are responsible for the red, purple and blue colors of many flowers, which attract pollinators to spread pollen. The colors of flowers are also essential for plants to survive in the nature and become one of the most significant characteristics of ornamental plants. In the booming floriculture industry, to produce various flower colors could increase the richness of natural colors, but it is still difficult to breed flowers with coveted blue color. The diversity of flower color is mainly determined by the types and contents of anthocyanins and their derivatives. The synthesis of delphinidin pigments is the key factor for breeding blue flowers. However, there are no structural genes in many plants to biosynthesize delphinidin pigments. Blue flowers are successfully created by genetic engineering in recent years. In this paper, using common ornamental plants as examples, we review the mechanism of plant flower coloration from the aspects of the key factors affecting the synthesis of delphinidin pigment and the production strategies of blue flowers based on the regulation of anthocyanin metabolism. Different strategies of molecular breeding could provide opportunities to improve colors of other floriculture plants and to develop anthocyanin-rich economic crops, such as colored cotton with blue fibers.
Anthocyanins
;
metabolism
;
Flowers
;
Gene Expression Regulation, Plant
;
Genetic Engineering
;
Pigmentation
;
genetics
10.Mechanism of the anthocyanin single component cyanidin-3-O-glucoside inhibiting proliferation and migration of B16-F10 cells.
Li WANG ; Peng CHENG ; Chen-Fei QU ; Xiu-Yan LI
Acta Physiologica Sinica 2019;71(6):855-862
To study the effects of the anthocyanin single component cyanidin-3-O-glucoside (Cy-3-glu) on the proliferation and migration of mouse melanoma cells and to elucidate the underlying mechanisms, B16-F10 cells were treated with different concentrations of Cy-3-glu. Cell viability was analyzed by a CCK-8 method. Cell migration was determined by the callus scratching technique. Cell cycle was measured by the flow cytometry. The expression levels of genes involved in cell cycle regulation were detected by real-time PCR. Protein expression levels of p-AKT, E-cadherin, N-cadherin and vimentin were analyzed by Western blot. The growth and migration of B16-F10 cells in C57BL/6J mice were monitored by the cryogenically cooled IVIS-imaging system. The results showed that Cy-3-glu significantly inhibited the growth (P < 0.001) and migration (P < 0.01) of B16-F10 cells, and arrested the cell cycle in the S phase. After Cy-3-glu treatment, the expression levels of p-AKT (P < 0.05), N-cadherin and vimentin (P < 0.001) were decreased significantly, and the expression level of E-cadherin was dramatically increased (P < 0.05). The size and weight of tumors and tumor metastasis in mice fed with a diet containing Cy-3-glu were significantly reduced (P < 0.05). In conclusion, Cy-3-glu inhibits proliferation and migration of B16-F10 cells by inhibiting the PI3K/AKT signaling pathway, cell adhesion and migration signals.
Animals
;
Anthocyanins
;
chemistry
;
pharmacology
;
Cell Line, Tumor
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Glucosides
;
pharmacology
;
Melanoma, Experimental
;
Mice
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases
;
metabolism

Result Analysis
Print
Save
E-mail