1.Research progress on chemical constituents and pharmacological activities of Morus alba.
Xi ZHONG ; He YANG ; Xiao-Xue KE ; Hong-Juan CUI
China Journal of Chinese Materia Medica 2022;47(9):2373-2391
Morus alba, a traditional economic crop, is also a significant medicinal plant. The branches(Mori Ramulus), leaves(Mori Folium), roots and barks(Mori Cortex), and fruits(Mori Fructus) of M. alba are rich in chemical components, such as alkaloids, flavonoids, flavanols, anthocyanins, benzofurans, phenolic acids, and polysaccharides, and possess hypoglycemic, hypolipidemic, anti-inflammatory, anti-tumor, anti-microbial, liver protective, immunoregulatory, and other pharmacological activities. This study analyzed the sources, classification, and functions of the main chemical components in M. alba and systematically summarized the latest research results of essential active components in M. alba and their pharmacological effects to provide references for in-depth research and further development as well as utilization of active components in M. alba.
Anthocyanins
;
Flavonoids/pharmacology*
;
Morus
;
Plant Extracts/pharmacology*
;
Plant Leaves
2.Effects of cu2+ on biosynthesis of camptothecin in cell cultures of Camptotheca acuminata.
Qing GU ; Da-Feng SONG ; Hong ZHANG ; Mu-Yuan ZHU
Chinese Journal of Biotechnology 2006;22(4):624-628
Camptothecin is a strong anti-tumor compound isolated from Camptotheca acuminata. One of the most important way for the production of Camptothecin is by cell cultures of Camptotheca acuminata. The effect of Cu2+ on camptothecin accumulation in Camptotheca acuminata cell line was described in this paper. The results showed that the optimum CuCl2 concentration in B5 medium was 0.008 mg/mL, which increased camptothecin production for 30 times compare to the control while has no inhibitive effects on cell growth, at the same time, the peroxidase activity was increased and the anthocyanidin accumulation was inhibited. The promotive effects of Cu2+ on camptothecin accumulation in light was higher than that in dark.
Anthocyanins
;
biosynthesis
;
Antineoplastic Agents, Phytogenic
;
biosynthesis
;
Camptotheca
;
growth & development
;
metabolism
;
Camptothecin
;
biosynthesis
;
Copper
;
pharmacology
;
Light
3.In vivo antioxidant activity of rabbiteye blueberry (Vaccinium ashei cv. 'Brightwell') anthocyanin extracts.
Jing WANG ; Xingyu ZHAO ; Jiawei ZHENG ; Daniela D HERRERA-BALANDRANO ; Xiaoxiao ZHANG ; Wuyang HUANG ; Zhongquan SUI
Journal of Zhejiang University. Science. B 2023;24(7):602-616
Blueberries are rich in phenolic compounds including anthocyanins which are closely related to biological health functions. The purpose of this study was to investigate the antioxidant activity of blueberry anthocyanins extracted from 'Brightwell' rabbiteye blueberries in mice. After one week of adaptation, C57BL/6J healthy male mice were divided into different groups that were administered with 100, 400, or 800 mg/kg blueberry anthocyanin extract (BAE), and sacrificed at different time points (0.1, 0.5, 1, 2, 4, 8, or 12 h). The plasma, eyeball, intestine, liver, and adipose tissues were collected to compare their antioxidant activity, including total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity and glutathione-peroxidase (GSH-PX/GPX) content, and the oxidative stress marker malondialdehyde (MDA) level. The results showed that blueberry anthocyanins had positive concentration-dependent antioxidant activity in vivo. The greater the concentration of BAE, the higher the T-AOC value, but the lower the MDA level. The enzyme activity of SOD, the content of GSH-PX, and messenger RNA (mRNA) levels of Cu,Zn-SOD, Mn-SOD, and GPX all confirmed that BAE played an antioxidant role after digestion in mice by improving their antioxidant defense. The in vivo antioxidant activity of BAE indicated that blueberry anthocyanins could be developed into functional foods or nutraceuticals with the aim of preventing or treating oxidative stress-related diseases.
Male
;
Mice
;
Animals
;
Antioxidants/pharmacology*
;
Blueberry Plants
;
Anthocyanins/pharmacology*
;
Mice, Inbred C57BL
;
Superoxide Dismutase
;
Plant Extracts/pharmacology*
;
Superoxide Dismutase-1
4.Significant improved anthocyanins biosynthesis in suspension cultures of Vitis vinifera by process intensification.
Jun-Ge QU ; Xing-Ju YU ; Wei ZHANG ; Mei-Fang JIN
Chinese Journal of Biotechnology 2006;22(2):299-305
The low-production is a ubiquitous problem and has prevented the commercialization of secondary metabolite production in plant cell culture. In order to examine the effective approaches to improvement of secondary metabolite production in plant cell culture, the investigation of anthocyanins accumulation in suspension cultures of Vitis vinifera, as a model system, had been initiated in our laboratory. In this present research, various elicitors and the precursor of phenylalanine were used in combination to enhance the anthocyanins production in suspension cultures of Vitis vinifera. And an integrated process with the combination of elicitation, precursor feeding and light irradiation was reported for rational bioprocess design. Among the combination treatment of phenylalanine feeding and several elicitors (methyl-beta-cyclodextrin, dextran T-40, methyl jasmonate, extracts of Aspergillus niger and Fusarium orthoceras), the combination with methyl jasmonate gave the highest anthocyanins production in suspension cultures of Vitis vinifera. When compared to the controls, the anthocyanins content (CV/g, FCW) and production (CV/L) increased by 2.7-fold and 3.4-fold, respectively. The optimum time for the addition of phenylalanine and methyl jasmonate was 4 days after inoculation. Two cell lines with different anthocyanins-producing capacity responded differently to the optimum combination treatment of 30 micromol/L phenylalanine feeding, 218 micromol/L methyl jasmonate elicitation and 3000 to approximately 4000 1x light illumination. The high-and low-anthocyanins-producing cell lines of VV05 and VV06 produced the maximum of 2975 and 4090 CV/L of anthocyanins that were 2.5- and 5.2-fold of the controls, respectively.
Acetates
;
pharmacology
;
Anthocyanins
;
biosynthesis
;
Cell Culture Techniques
;
methods
;
Cells, Cultured
;
Culture Media
;
Cyclopentanes
;
pharmacology
;
Light
;
Oxylipins
;
pharmacology
;
Phenylalanine
;
pharmacology
;
Vitis
;
cytology
;
metabolism
5.Cyanidin-3-glucoside attenuates body weight gain, serum lipid concentrations and insulin resistance in high-fat diet-induced obese rats.
Ren-Qiang YU ; Xiao-You WU ; Xiang ZHOU ; Jing ZHU ; Lu-Yi MA
Chinese Journal of Contemporary Pediatrics 2014;16(5):534-538
OBJECTIVECyanidin-3-glucoside (C3G) is the main active ingredient of anthocyanidin. This study aimed to evaluate the effects of C3G on body weight gain, visceral adiposity, lipid profiles and insulin resistance in high-fat diet-induced obese rats.
METHODSThirty male Sprague-Dawley rats were randomly divided into a control group (n=8) and a high fat diet group (n=22), and were fed with standard diet or high fat diet. Five weeks later, 17 high-fat diet-induced obese rats were randomly given C3G [100 mg/(kg·d)] or normal saline via intragastric administration for 5 weeks. Five weeks later, body weight, visceral adiposity and food intake were measured. Blood samples were collected for detecting fasting glucose, serum insulin, lipid profiles and adiponectin. Insulin resistance index, atherosclerosis index and average feed efficiency ratio were calculated.
RESULTSC3G supplementation markedly decreased body weight, visceral adiposity, average feed efficiency ratio, triglyceride, total cholesterol, low density lipoprotein cholesterol, fasting glucose, serum insulin, insulin resistance index and atherosclerosis index in high-fat diet-induced obese rats. C3G supplementation normalized serum adiponectin and high density lipoprotein cholesterol levels in high-fat diet-induced obese rats.
CONCLUSIONSCyanidin-3-glucoside can reduce body weight gain, and attenuate obesity-associated dyslipidemia and insulin resistance in high-fat diet-fed rats via up-regulating serum adiponectin level.
Animals ; Anthocyanins ; pharmacology ; Blood Glucose ; analysis ; Diet, High-Fat ; Glucosides ; pharmacology ; Insulin Resistance ; Lipids ; blood ; Male ; Obesity ; blood ; drug therapy ; Rats ; Rats, Sprague-Dawley ; Weight Gain ; drug effects
6.Mechanism of the anthocyanin single component cyanidin-3-O-glucoside inhibiting proliferation and migration of B16-F10 cells.
Li WANG ; Peng CHENG ; Chen-Fei QU ; Xiu-Yan LI
Acta Physiologica Sinica 2019;71(6):855-862
To study the effects of the anthocyanin single component cyanidin-3-O-glucoside (Cy-3-glu) on the proliferation and migration of mouse melanoma cells and to elucidate the underlying mechanisms, B16-F10 cells were treated with different concentrations of Cy-3-glu. Cell viability was analyzed by a CCK-8 method. Cell migration was determined by the callus scratching technique. Cell cycle was measured by the flow cytometry. The expression levels of genes involved in cell cycle regulation were detected by real-time PCR. Protein expression levels of p-AKT, E-cadherin, N-cadherin and vimentin were analyzed by Western blot. The growth and migration of B16-F10 cells in C57BL/6J mice were monitored by the cryogenically cooled IVIS-imaging system. The results showed that Cy-3-glu significantly inhibited the growth (P < 0.001) and migration (P < 0.01) of B16-F10 cells, and arrested the cell cycle in the S phase. After Cy-3-glu treatment, the expression levels of p-AKT (P < 0.05), N-cadherin and vimentin (P < 0.001) were decreased significantly, and the expression level of E-cadherin was dramatically increased (P < 0.05). The size and weight of tumors and tumor metastasis in mice fed with a diet containing Cy-3-glu were significantly reduced (P < 0.05). In conclusion, Cy-3-glu inhibits proliferation and migration of B16-F10 cells by inhibiting the PI3K/AKT signaling pathway, cell adhesion and migration signals.
Animals
;
Anthocyanins
;
chemistry
;
pharmacology
;
Cell Line, Tumor
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Glucosides
;
pharmacology
;
Melanoma, Experimental
;
Mice
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases
;
metabolism
7.The effect of anthocyanins on cholesterol efflux from mouse peritoneal macrophage-derived foam cells and its possible molecular mechanism.
Min XIA ; Qing WANG ; Meng-jun HOU ; Hui-lian ZHU ; Jing MA ; Zhi-hong TANG ; Wen-hua LING
Chinese Journal of Cardiology 2007;35(6):575-579
OBJECTIVETo investigate the potential role of anthocyanins on modulating cholesterol efflux in mouse peritoneal macrophage-derived foam cells and related molecular mechanisms.
METHODSThe macrophages were isolated from pathogen-free NIH mice and were loaded with 50 microg/ml oxLDL for 24 hours, newly formed foam cells were then treated with anthocyanins (cyanidin-3-glucoside, Cy-3-g; or peonidin-3-glucoside, Pn-3-g) at the concentrations of 1 micromol/L, 10 micromol/L, 100 micromol/L for 0 to 36 hours, respectively. The enzymatic-fluorescent method was used to determine cholesterol content in culture medium. ABCA1 expressions at mRNA and protein level were detected by real-time PCR and confocal microscope.
RESULTSCholesterol efflux of macrophage-derived foam cells increased in a time- and dose-dependent manner post anthocyanins treatment. ABCA1 expressions at mRNA and protein levels were also significantly enhanced after anthocyanins treatment in these cells and these effects could be blocked by co-treatment with DIDS, an inhibitor of the transport activities of ABCA1 and blocker of apoAI-mediated cholesterol efflux.
CONCLUSIONThese data demonstrate that anthocyanins induce cholesterol efflux from mouse peritoneal macrophage-derived foam cells via regulating ABCA1 expression.
ATP Binding Cassette Transporter 1 ; ATP-Binding Cassette Transporters ; metabolism ; Animals ; Anthocyanins ; pharmacology ; Cells, Cultured ; Cholesterol ; metabolism ; Foam Cells ; drug effects ; metabolism ; Macrophages, Peritoneal ; cytology ; Mice
8.The ameliorate effect of anthocyanin onMouse testis damage.
Pin GONG ; Fuxin CHEN ; Jing WANG ; Sai JIN ; Yangmin MA
Chinese Journal of Industrial Hygiene and Occupational Diseases 2014;32(10):762-764
OBJECTIVETo study the effect of Anthocyanin (Ay) on Cadmium-Induced Mouse testis Damage.
METHODSMouse testis damage model were constructed and testis malonaldehyde (MDA) and protein carbonxyl content (PCO), as well as catalase (CAT) and superoxide dismutase (SOD) were determined.
RESULTSThe intoxication of cadmium can cause the increase of MDA and PCO content in mouse testis (P < 0.05), however, the activities of SOD and CAT were altered (P < 0.01).
CONCLUSIONAy have the strong potent to scavenge free radicals, owing to its special chemical structures, and act as a protector to inhibit the oxidative stress induced by cadmium.
Animals ; Anthocyanins ; chemistry ; pharmacology ; Cadmium ; toxicity ; Catalase ; drug effects ; Male ; Malondialdehyde ; analysis ; Mice ; Oxidative Stress ; Protein Carbonylation ; drug effects ; Superoxide Dismutase ; drug effects ; Testis ; drug effects
9.Mechanism of Berberis atrocarpa anthocyanin against Alzheimer's disease based on network pharmacology and experimental verification.
Hai-Yan BAO ; Ling CHEN ; Ying YANG ; Min LI ; Hui-Min LI ; Ying-Ying KANG ; Jian-Guang LI
China Journal of Chinese Materia Medica 2023;48(3):778-788
This study aimed to explore the potential mechanism of Berberis atrocarpa Schneid. anthocyanin against Alzheimer's disease(AD) based on network pharmacology, molecular docking technology, and in vitro experiments. Databases were used to screen out the potential targets of the active components of B. atrocarpa and the targets related to AD. STRING database and Cytoscape 3.9.0 were adopted to construct a protein-protein interaction(PPI) network and carry out topological analysis of the common targets. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were performed on the target using the DAVID 6.8 database. Molecular docking was conducted to the active components and targets related to the nuclear factor kappa B(NF-κB)/Toll-like receptor 4(TLR4) pathway. Finally, lipopolysaccharide(LPS) was used to induce BV2 cells to establish the model of AD neuroinflammation for in vitro experimental validation. In this study, 426 potential targets of active components of B. atrocarpa and 329 drug-disease common targets were obtained, and 14 key targets were screened out by PPI network. A total of 623 items and 112 items were obtained by GO functional enrichment analysis and KEGG pathway enrichment analysis, respectively. Molecular docking results showed that NF-κB, NF-κB inhibitor(IκB), TLR4, and myeloid differentiation primary response 88(MyD88) had good binding abilities to the active components, and malvidin-3-O-glucoside had the strongest binding ability. Compared with the model group, the concentration of nitric oxide(NO) decreased at different doses of malvidin-3-O-glucoside without affecting the cell survival rate. Meanwhile, malvidin-3-O-glucoside down-regulated the protein expressions of NF-κB, IκB, TLR4, and MyD88. This study uses network pharmacology and experimental verification to preliminarily reveal that B. atrocarpa anthocyanin can inhibit LPS-induced neuroinflammation by regulating the NF-κB/TLR4 signaling pathway, thereby achieving the effect against AD, which provides a theoretical basis for the study of its pharmacodynamic material basis and mechanism.
NF-kappa B
;
Alzheimer Disease
;
Network Pharmacology
;
Anthocyanins
;
Berberis
;
Lipopolysaccharides
;
Molecular Docking Simulation
;
Myeloid Differentiation Factor 88
;
Neuroinflammatory Diseases
;
Toll-Like Receptor 4
;
I-kappa B Proteins
10.Cyanidin-3-O-galactoside and blueberry extracts supplementation improves spatial memory and regulates hippocampal ERK expression in senescence-accelerated mice.
Long TAN ; Hong Peng YANG ; Wei PANG ; Hao LU ; Yan Dan HU ; Jing LI ; Shi Jun LU ; Wan Qi ZHANG ; Yu Gang JIANG
Biomedical and Environmental Sciences 2014;27(3):186-196
OBJECTIVETo investigate whether the antioxidation and the regulation on the Extracellular Regulated Protein Kinases (ERK) signaling pathway are involved in the protective effects of blueberry on central nervous system.
METHODS30 Senescence-accelerated mice prone 8 (SAMP8) mice were divided into three groups and treated with normal diet, blueberry extracts (200 mg/kg•bw/day) and cyaniding-3-O-galactoside (Cy-3-GAL) (50 mg/kg•bw/day) from blueberry for 8 weeks. 10 SAMR1 mice were set as control group. The capacity of spatial memory was assessed by Passive avoidance task and Morris water maze. Histological analyses on hippocampus were completed. Malondialdehyde (MDA) levels, Superoxide Dismutase (SOD) activity and the expression of ERK were detected.
RESULTSBoth Cy-3-GAL and blueberry extracts were shown effective functions to relieve cellular injury, improve hippocampal neurons survival and inhibit the pyramidal cell layer damage. Cy-3-GAL and blueberry extracts also increased SOD activity and reduced MDA content in brain tissues and plasma, and increased hippocampal phosphorylated ERK (p-ERK) expression in SAMP8 mice. Further more, the passive avoidance task test showed that both the latency time and the number of errors were improved by Cy-3-GAL treatment, and the Morris Water Maze test showed significant decreases of latency were detected by Cy-3-GAL and blueberry extracts treatment on day 4.
CONCLUSIONBlueberry extracts may reverse the declines of cognitive and behavioral function in the ageing process through several pathways, including enhancing the capacity of antioxidation, altering stress signaling. Cy-3-GAL may be an important active ingredient for these biological effects.
Aging ; drug effects ; Animals ; Anthocyanins ; pharmacology ; Avoidance Learning ; Blueberry Plants ; chemistry ; Dietary Supplements ; Galactosides ; pharmacology ; Hippocampus ; drug effects ; metabolism ; Malondialdehyde ; metabolism ; Maze Learning ; Memory ; drug effects ; Mice ; Mitogen-Activated Protein Kinase 3 ; metabolism ; Phosphorylation ; Plant Extracts ; pharmacology ; Superoxide Dismutase ; metabolism