1.ANXA2 and NF-κB positive feedback loop promotes high glucose-induced pyroptosis in renal tubular epithelial cells.
Jiayi YANG ; Yang LUO ; Zixuan ZHU ; Wenbin TANG
Journal of Central South University(Medical Sciences) 2025;50(6):940-954
OBJECTIVES:
Pyroptosis plays a critical role in tubulointerstitial lesions of diabetic kidney disease (DKD). Annexin A2 (ANXA2) is involved in cell proliferation, apoptosis, and adhesion and may be closely related to DKD, but its specific mechanism remains unclear. This study aims to investigate the role and molecular mechanism of ANXA2 in high glucose-induced pyroptosis of renal tubular epithelial cells, providing new targets for DKD prevention and treatment.
METHODS:
Human renal tubular epithelial HK-2 cells were divided into a normal glucose group (5.5 mmol/L), a high glucose group (30.0 mmol/L), and a osmotic control group (24.5 mmol/L mannitol+5.5 mmol/L glucose). ANXA2 expression was modulated by overexpression of plasmids and small interfering RNA (siRNA). Cell proliferation was measured by 5-ethynyl-2'-deoxyuridine (EdU) assay, apoptosis by flow cytometry, and ANXA2, p50, and p65 subcellular localization by immunofluorescence. Western blotting was employed to detect α-smooth muscle actin (α-SMA), fibronectin (FN), and collagen type IV (Col-IV). Real-time fluorescence quantitative PCR (RT-qPCR) and Western blotting were used to analyze nuclear factor-κB (NF-κB) subunits p50/p65 and the pyroptosis pathway factors NLR family Pyrin domain containing 3 (NLRP3), caspase-1, inferleukin (IL)-1β, and IL-18. Protein interactions between ANXA2 and p50/p65 were examined by co-immunoprecipitation, while chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were used to examine NF-κB binding to the ANXA2 promoter.
RESULTS:
High glucose upregulated ANXA2 expression and promoted its nuclear translocation (P<0.01). High glucose reduced cell proliferation, increased apoptosis, and elevated α-SMA, FN, and Col-IV expression (all P<0.05); ANXA2 overexpression aggravated these effects (all P<0.05), while ANXA2 knockdown reversed them (all P<0.05). High glucose activated NF-κB and increased NLRP3, caspase-1, L-1β, and IL-18 mRNA and protein expression (all P<0.05); ANXA2 overexpression further enhanced this, whereas knockdown suppressed NF-κB activation and downstream factors (all P<0.05). Co-immunoprecipitation confirmed ANXA2 directly binds the NF-κB subunit p65. ChIP assays revealed p65 binds specifically to ANXA2 promoter regions (ChIP-2, ChIP-4, and ChIP-6), and luciferase activity in corresponding mutant constructs (M2, M4, and M6) was significantly increased versus controls (all P<0.05), confirming positive transcriptional regulation of ANXA2 by p65.
CONCLUSIONS
ANXA2 and NF-κB form a positive feedback loop that sustains NLRP3 inflammasome activation, promotes pyroptosis pathway activation, and aggravates high glucose-induced renal tubular epithelial cell injury. Targeting ANXA2 or blocking its interaction with p65 may be a novel strategy to slow DKD progression.
Humans
;
Pyroptosis/drug effects*
;
Annexin A2/physiology*
;
Epithelial Cells/cytology*
;
Kidney Tubules/cytology*
;
Glucose/pharmacology*
;
Diabetic Nephropathies/metabolism*
;
NF-kappa B/metabolism*
;
Cell Line
;
Cell Proliferation
;
Transcription Factor RelA/metabolism*
;
Feedback, Physiological
2.Single-copy Loss of Rho Guanine Nucleotide Exchange Factor 10 ( arhgef10) Causes Locomotor Abnormalities in Zebrafish Larvae.
Yi ZHANG ; Ming Xing AN ; Chen GONG ; Yang Yang LI ; Yu Tong WANG ; Meng LIN ; Rong LI ; Chan TIAN
Biomedical and Environmental Sciences 2022;35(1):35-44
OBJECTIVE:
To determine if ARHGEF10 has a haploinsufficient effect and provide evidence to evaluate the severity, if any, during prenatal consultation.
METHODS:
Zebrafish was used as a model for generating mutant. The pattern of arhgef10 expression in the early stages of zebrafish development was observed using whole-mount in situ hybridization (WISH). CRISPR/Cas9 was applied to generate a zebrafish model with a single-copy or homozygous arhgef10 deletion. Activity and light/dark tests were performed in arhgef10 -/-, arhgef10 +/-, and wild-type zebrafish larvae. ARHGEF10 was knocked down using small interferon RNA (siRNA) in the SH-SY5Y cell line, and cell proliferation and apoptosis were determined using the CCK-8 assay and Annexin V/PI staining, respectively.
RESULTS:
WISH showed that during zebrafish embryonic development arhgef10 was expressed in the midbrain and hindbrain at 36-72 h post-fertilization (hpf) and in the hemopoietic system at 36-48 hpf. The zebrafish larvae with single-copy and homozygous arhgef10 deletions had lower exercise capacity and poorer responses to environmental changes compared to wild-type zebrafish larvae. Moreover, arhgef10 -/- zebrafish had more severe symptoms than arhgef10 +/- zebrafish. Knockdown of ARHGEF10 in human neuroblastoma cells led to decreased cell proliferation and increased cell apoptosis.
CONCLUSION
Based on our findings, ARHGEF10 appeared to have a haploinsufficiency effect.
Animals
;
Annexin A5
;
Apoptosis
;
Blotting, Western
;
CRISPR-Associated Protein 9
;
CRISPR-Cas Systems
;
Cell Line
;
Cell Proliferation
;
Cells, Cultured
;
Flow Cytometry
;
Genotype
;
Humans
;
In Situ Hybridization
;
Larva/physiology*
;
Phenotype
;
RNA/isolation & purification*
;
Real-Time Polymerase Chain Reaction/standards*
;
Rho Guanine Nucleotide Exchange Factors/metabolism*
;
Sincalide/analysis*
;
Spectrophotometry/methods*
;
Zebrafish/physiology*
3.HBV-upregulated Lnc-HUR1 inhibits the apoptosis of liver cancer cells.
Yongchen CHEN ; Jinyan WEN ; Dandan QI ; Xiaomei TONG ; Ningning LIU ; Xin YE
Chinese Journal of Biotechnology 2022;38(9):3501-3514
Lnc-HUR1 is an HBV-related long non-coding RNA, which can promote the proliferation of hepatoma cells and the occurrence and development of liver cancer. In this study we explored the effect of lnc-HUR1 on the apoptosis of hepatocellular carcinoma cells by taking the approach of immunoblotting, quantitative real time PCR, luciferase reporter assay, chromatin immunoprecipitation (ChIP) and flow cytometry. We found that overexpression of lnc-HUR1 significantly reduced the activity of caspase3/7 and the cleavage of PARP-1, while knocking down of lnc-HUR1 significantly increased the activity of caspase3/7 and promoted the cleavage of PARP-1 in HepG2 cells treated with TGF-β, pentafluorouracil or staurosporine. Consistently, the data from Annexin-V/PI staining showed that overexpression of lnc-HUR1 inhibited apoptosis, while knockdown of lnc-HUR1 promoted apoptosis. Moreover, overexpression of lnc-HUR1 up-regulated the apoptosis inhibitor Bcl-2 and down-regulated the pro-apoptotic factor BAX at both RNA and protein levels. In the CCL4-induced acute liver injury mice model, the expression of Bcl-2 in the liver tissue of lnc-HUR1 transgenic mice was higher than that of the control mice. The data from ChIP assay indicated that lnc-HUR1 reduced the enrichment of p53 on Bcl-2 and BAX promoters. All these results indicated that lnc-HUR1 inhibited the apoptosis by promoting the expression of apoptosis inhibitor Bcl-2 and inhibiting the expression of apoptosis promoting factor BAX. Further studies showed that lnc-HUR1 regulated the transcription of Bcl-2 and BAX in HCT116 cells, but had no effect on the expression of Bcl-2 and BAX in HCT116 p53-/- cells, indicating that lnc-HUR1 regulates the transcription of Bcl-2 and BAX dependent upon the activity of p53. In conclusion, HBV upregulated lnc-HUR1 can inhibit the apoptosis of hepatoma cells. Lnc-HUR1 inhibits apoptosis by inhibiting the transcriptional activity of p53. These results suggest that lnc-HUR1 plays an important role in the occurrence and development of HBV-related hepatocellular carcinoma.
Animals
;
Annexins/pharmacology*
;
Apoptosis
;
Carcinoma, Hepatocellular/genetics*
;
Cell Proliferation
;
Hep G2 Cells
;
Hepatitis B virus/metabolism*
;
Humans
;
Liver Neoplasms/genetics*
;
Mice
;
Poly(ADP-ribose) Polymerase Inhibitors/pharmacology*
;
Proto-Oncogene Proteins c-bcl-2/pharmacology*
;
RNA, Long Noncoding/metabolism*
;
Staurosporine/pharmacology*
;
Transforming Growth Factor beta/pharmacology*
;
Tumor Suppressor Protein p53/pharmacology*
;
bcl-2-Associated X Protein/pharmacology*
4.MACS-annexin V cell sorting of semen samples with high TUNEL values decreases the concentration of cells with abnormal chromosomal content: a pilot study.
Sahar EL FEKIH ; Nadia GUEGANIC ; Corinne TOUS ; Habib Ben ALI ; Mounir AJINA ; Nathalie DOUET-GUILBERT ; Hortense DRAPIER ; Damien BEAUVILLARD ; Frédéric MOREL ; Aurore PERRIN
Asian Journal of Andrology 2022;24(5):445-450
We question whether, in men with an abnormal rate of sperm DNA fragmentation, the magnetic-activated cell sorting (MACS) could select spermatozoa with lower rates of DNA fragmentation as well as spermatozoa with unbalanced chromosome content. Cryopreserved spermatozoa from six males were separated into nonapoptotic and apoptotic populations. We determined the percentages of spermatozoa with (i) externalization of phosphatidylserine (EPS) by annexin V-Fluorescein isothiocyanate (FITC) labeling, (ii) DNA fragmentation by TdT-mediated-dUTP nick-end labeling (TUNEL), and (iii) numerical abnormalities for chromosomes X, Y, 13, 18, and 21 by fluorescence in situ hybridization (FISH), on the whole ejaculate and selected spermatozoa in the same patient. Compared to the nonapoptotic fraction, the apoptotic fraction statistically showed a higher number of spermatozoa with EPS, with DNA fragmentation, and with numerical chromosomal abnormalities. Compared to the whole ejaculate, we found a significant decrease in the percentage of spermatozoa with EPS and decrease tendencies of the DNA fragmentation rate and the sum of disomy levels in the nonapoptotic fraction. Conversely, we observed statistically significant higher rates of these three parameters in the apoptotic fraction. MACS may help to select spermatozoa with lower rates of DNA fragmentation and unbalanced chromosome content in men with abnormal rates of sperm DNA fragmentation.
Annexin A5
;
Chromosome Aberrations
;
DNA Fragmentation
;
Humans
;
In Situ Hybridization, Fluorescence
;
In Situ Nick-End Labeling
;
Male
;
Pilot Projects
;
Semen
;
Spermatozoa
5.Expression of miR-126 in Diffuse Large B-Cell Lymphoma and Its Biological Function.
Chen QIU ; Qiao-Hua ZHANG ; Gang-Gang WANG
Journal of Experimental Hematology 2022;30(5):1415-1422
OBJECTIVE:
To investigate the expression of miR-126 in diffuse large B-cell lymphoma (DLBCL) tissues and its biological function.
METHODS:
The lymphoma tissues of 46 DLBCL patients in our hospital were selected as the research object, and the lymph node hyperplasia tissue of 31 patients with reactive hyperplasia were selected as controls. The expression level of miR-126 in the patients' tissues was detected by real-time fluorescent quantitative PCR (RT-qPCR), and the correlation of miR-126 expression with the pathological characteristics and prognosis of the patients was analyzed. The DLBCL cell line SU-DHL-4 was transfected with miR-126 inhibitor and its negative control (NC inhibitor) or miR-126 mimics and its negative control (NC mimics). RT-qPCR assay was used to detect the expression level of miR-126 in cells; MTT method was used to detect cell proliferation activity; single clone formation test was used to detect cells colony-forming ability; Annexin V/PI double staining assay was used to detect cell apoptosis; Transwell test was used to detect cell migration and invasion ability; the expression levels of apoptosis-related proteins cleaved-Caspase-3, Bcl-2 and Bax were detected by Western blot.
RESULTS:
miR-126 was highly expressed in lymphoma tissues of DLBCL patients, and its expression level was significantly correlated with Hans type, IPI score and Ann-Arbor stage of DLBCL patients (P<0.05). Kaplan-Meier survival analysis showed that the survival rate of DLBCL patients with high expression of miR-126 was significantly lower than that of patients with low expression (P<0.05). Compared with the NC mimics group, the miR-126 expression level, cell proliferation rate, number of colony-forming units, migration and invasion ability, and Bcl-2 protein expression level in the miR-126 mimics group were significantly increased (P<0.05), but the cells apoptotic rate, cleaved-Caspase-3 and Bax protein expression levels were significantly reduced (P<0.05). Compared with the NC inhibitor group, the miR-126 expression level, cell proliferation rate, number of colony-forming units, migration and invasion ability, and Bcl-2 protein expression level in the miR-126 inhibitor group were significantly reduced (P<0.05), but the cells apoptosis rate, cleaved-Caspase-3 and Bax protein expression levels were significantly increased (P<0.05).
CONCLUSION
miR-126 is highly expressed in lymphoma tissues of DLBCL patients and its expression level is related to the poor prognosis of patients. miR-126 can promote DLBCL cell proliferation, invasion and migration, and inhibit cell apoptosis.
Annexin A5/metabolism*
;
Apoptosis
;
Apoptosis Regulatory Proteins
;
Caspase 3/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Hyperplasia
;
Lymphoma, Large B-Cell, Diffuse/genetics*
;
MicroRNAs/metabolism*
;
bcl-2-Associated X Protein/metabolism*
6.Multiple Mild Stimulations Reduce Membrane Distribution of CX3CR1 Promoted by Annexin a1 in Microglia to Attenuate Excessive Dendritic Spine Pruning and Cognitive Deficits Caused by a Transient Ischemic Attack in Mice.
Lu ZHENG ; Yi WANG ; Bin SHAO ; Huijuan ZHOU ; Xing LI ; Cai ZHANG ; Ning SUN ; Jing SHI
Neuroscience Bulletin 2022;38(7):753-768
A transient ischemic attack (TIA) can cause reversible and delayed impairment of cognition, but the specific mechanisms are still unclear. Annexin a1 (ANXA1) is a phospholipid-binding protein. Here, we confirmed that cognition and hippocampal synapses were impaired in TIA-treated mice, and this could be rescued by multiple mild stimulations (MMS). TIA promoted the interaction of ANXA1 and CX3CR1, increased the membrane distribution of CX3CR1 in microglia, and thus enhanced the CX3CR1 and CX3CL1 interaction. These phenomena induced by TIA could be reversed by MMS. Meanwhile, the CX3CR1 membrane distribution and CX3CR1-CX3CL1 interaction were upregulated in primary cultured microglia overexpressing ANXA1, and the spine density was significantly reduced in co-cultured microglia overexpressing ANXA1 and neurons. Moreover, ANXA1 overexpression in microglia abolished the protection of MMS after TIA. Collectively, our study provides a potential strategy for treating the delayed synaptic injury caused by TIA.
Animals
;
Annexin A1/metabolism*
;
CX3C Chemokine Receptor 1/metabolism*
;
Chemokine CX3CL1
;
Cognition
;
Dendritic Spines/metabolism*
;
Ischemic Attack, Transient
;
Mice
;
Microglia/metabolism*
7.Gomisin G Suppresses the Growth of Colon Cancer Cells by Attenuation of AKT Phosphorylation and Arrest of Cell Cycle Progression
Sony MAHARJAN ; Byoung Kwon PARK ; Su In LEE ; Yoongho LIM ; Keunwook LEE ; Younghee LEE ; Hyung Joo KWON
Biomolecules & Therapeutics 2019;27(2):210-215
Colorectal cancer is one of the leading causes of cancer related death due to a poor prognosis. In this study, we investigated the effect of Gomisin G on colon cancer growth and examined the underlying mechanism of action. We found that Gomisin G significantly suppressed the viability and colony formation of LoVo cells. Gomisin G reduced the phosphorylation level of AKT implying that Gomisin G suppressed the PI3K-AKT signaling pathway. Gomisin G also induced apoptosis shown by Annexin V staining and an increased level of cleaved poly-ADP ribose polymerase (PARP) and Caspase-3 proteins. Furthermore, Gomisin G remarkably triggered the accumulation of cells at the sub-G1 phase which represents apoptotic cells. In addition, the level of cyclin D1 and phosphorylated retinoblastoma tumor suppressor protein (Rb) was also reduced by the treatment with Gomisin G thus curtailing cell cycle progression. These findings show the suppressive effect of Gomisin G by inhibiting proliferation and inducing apoptosis in LoVo cells. Taken together, these results suggest Gomisin G could be developed as a potential therapeutic compound against colon cancer.
Annexin A5
;
Apoptosis
;
Caspase 3
;
Cell Cycle
;
Colon
;
Colonic Neoplasms
;
Colorectal Neoplasms
;
Cyclin D1
;
Phosphorylation
;
Prognosis
;
Retinoblastoma
;
Ribose
8.Potential biomarkers and antagonists for fluoranthene-induced cellular toxicity of bone marrow derived mesenchymal stem cells
Md Moinul HOQUE ; Young Eun LEE ; Hye Ran KIM ; Myung Geun SHIN
Blood Research 2019;54(4):253-261
BACKGROUND: Fluoranthene (FR) is a common environmental pollutant that exists in a complex mixture with other polycyclic aromatic hydrocarbons (PAHs). We identified biomarkers for monitoring FR exposure and investigated the rescue effect of FR-induced cellular toxicity via aryl hydrocarbon receptor (AHR) antagonist activity in bone marrow derived mesenchymal stem cells (BM-MSCs).METHODS: Morphological changes, viability, and rescue effects of an AHR antagonist (CH223191) were examined in BM-MSCs after exposure to FR. Cytotoxic effects were assayed using the tetrazolium-based colorimetric assay. Apoptosis was measured by annexin V and propidium iodide dye-based flowcytometry assay, mitochondrial membrane potential assay, and nuclear DNA fragmentation assay. Molecular signaling pathways of apoptosis and autophagy were investigated using immunoblotting. Proteomics were performed in order to reveal the spectra of cellular damage and identify biomarkers for FR exposure.RESULTS: Exposing BM-MSCs to FR (IC₅₀=50 µM) induced cell death and morphological changes, while the AHR antagonist showed rescue effects. Autophagy was activated and mitochondrial membrane potential was decreased. Proteomic analysis identified 48 deregulated proteins (26 upregulated and 22 downregulated). Among them, annexin A6, pyruvate kinase, UDP-glucose dehydrogenase, and phospholipase A2 could be potential biomarkers for FR exposure.CONCLUSION: The exposure of BM-MSCs to FR induced remarkable alterations in cellular biology and the proteome, allowing for identification of novel biomarkers for FR exposure. Furthermore, AHR antagonists might be able to prevent cellular damage due to FR exposure.
Annexin A5
;
Annexin A6
;
Apoptosis
;
Autophagy
;
Biomarkers
;
Bone Marrow
;
Cell Death
;
DNA Fragmentation
;
Immunoblotting
;
Membrane Potential, Mitochondrial
;
Mesenchymal Stromal Cells
;
Oxidoreductases
;
Phospholipases A2
;
Polycyclic Hydrocarbons, Aromatic
;
Propidium
;
Proteome
;
Proteomics
;
Pyruvate Kinase
;
Receptors, Aryl Hydrocarbon
9.Asiatic Acid Induces Apoptosis and Autophagy and Reduces MiR-17 and MiR-21 Expression in Pancreatic Cancer Cell Lines
Yoon Gyung JO ; Myoungjae KIM ; Hyeji SHIN ; Ki Yong LEE ; Eun Joo LEE
Natural Product Sciences 2019;25(4):298-303
This study investigated the cytotoxic effects and mechanism of action of asiatic acid in pancreatic cancer cell lines. First, we confirmed the cell viability of MIA PaCa-2 and PANC-1 cells after asiatic acid administration for 48 and 72 h. The viability of MIA PaCa-2 and PANC-1 cells decreased in a dose-dependent manner following asiatic acid administration. To investigate the underlying mechanism, we performed a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, annexin V assay, and western blotting. Asiatic acid induced apoptosis and autophagy through activation of AMP-activated protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) in MIA PaCa-2 cells. Finally, the expression of miR-17 and miR-21, known as oncogenes in pancreatic cancer, was decreased by asiatic acid. These results indicate that asiatic acid has potential as a new therapeutic agent against pancreatic cancer.
AMP-Activated Protein Kinases
;
Annexin A5
;
Apoptosis
;
Autophagy
;
Blotting, Western
;
Cell Line
;
Cell Survival
;
DNA Nucleotidylexotransferase
;
MicroRNAs
;
Oncogenes
;
Pancreatic Neoplasms
;
Sirolimus
10.Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-κB activation in HK-2 cells.
Jung Sun PARK ; Hoon In CHOI ; Eun Hui BAE ; Seong Kwon MA ; Soo Wan KIM
The Korean Journal of Internal Medicine 2019;34(1):146-155
BACKGROUND/AIMS: Indoxyl sulfate (IS) is a uremic toxin and an important causative factor in the progression of chronic kidney disease. Recently, paricalcitol (19-nor-1,25-dihydroxyvitamin D2) was shown to exhibit protective effects in kidney injury. Here, we investigated the effects of paricalcitol treatment on IS-induced renal tubular injury. METHODS: The fluorescent dye 2ʹ,7ʹ-dichlorofluorescein diacetate was used to measure intracellular reactive oxygen species (ROS) following IS administration in human renal proximal tubular epithelial (HK-2) cells. The effects of IS on cell viability were determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and levels of apoptosis-related proteins (Bcl-2-associated protein X [Bax] and B-cell lymphoma 2 [Bcl-2]), nuclear factor-κB (NF-κB) p65, and phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) were determined by semiquantitative immunoblotting. The promoter activity of NF-κB was measured by luciferase assays and apoptosis was determined by f low cytometry of cells stained with f luorescein isothiocyanate-conjugated Annexin V protein. RESULTS: IS treatment increased ROS production, decreased cell viability and induced apoptosis in HK-2 cells. IS treatment increased the expression of apoptosis-related protein Bax, decreased Bcl-2 expression, and activated phosphorylation of MAPK, NF-κB p65, and Akt. In contrast, paricalcitol treatment decreased Bax expression, increased Bcl-2 expression, and inhibited phosphorylation of MAPK, NF-κB p65, and Akt in HK-2 cells. NF-κB promoter activity was increased following IS, administration and was counteracted by pretreatment with paricalcitol. Additionally, flow cytometry analysis revealed that IS-induced apoptosis was attenuated by paricalcitol treatment, which resulted in decreased numbers of fluorescein isothiocyanate-conjugated Annexin V positive cells. CONCLUSIONS: Treatment with paricalcitol inhibited IS-induced apoptosis by regulating MAPK, NF-κB, and Akt signaling pathway in HK-2 cells.
Annexin A5
;
Apoptosis*
;
Cell Survival
;
Flow Cytometry
;
Fluorescein
;
Humans
;
Immunoblotting
;
Indican
;
Kidney
;
Luciferases
;
Lymphoma, B-Cell
;
Phosphorylation
;
Protein Kinases
;
Proto-Oncogene Proteins c-akt
;
Reactive Oxygen Species
;
Renal Insufficiency, Chronic
;
Signal Transduction

Result Analysis
Print
Save
E-mail