1.In-vitro performance and fracture strength of thin monolithic zirconia crowns
Paul WEIGL ; Anna SANDER ; Yanyun WU ; Roland FELBER ; Hans Christoph LAUER ; Martin ROSENTRITT
The Journal of Advanced Prosthodontics 2018;10(2):79-84
PURPOSE: All-ceramic restorations required extensive tooth preparation. The purpose of this in vitro study was to investigate a minimally invasive preparation and thickness of monolithic zirconia crowns, which would provide sufficient mechanical endurance and strength. MATERIALS AND METHODS: Crowns with thickness of 0.2 mm (group 0.2, n=32) or of 0.5 mm (group 0.5, n=32) were milled from zirconia and fixed with resin-based adhesives (groups 0.2A, 0.5A) or zinc phosphate cements (groups 0.2C, 0.5C). Half of the samples in each subgroup (n=8) underwent thermal cycling and mechanical loading (TCML)(TC: 5℃ and 55℃, 2×3,000 cycles, 2 min/cycle; ML: 50 N, 1.2×106 cycles), while the other samples were stored in water (37℃/24 h). Survival rates were compared (Kaplan-Maier). The specimens surviving TCML were loaded to fracture and the maximal fracture force was determined (ANOVA; Bonferroni; α=.05). The fracture mode was analyzed. RESULTS: In both 0.5 groups, all crowns survived TCML, and the comparison of fracture strength among crowns with and without TCML showed no significant difference (P=.628). Four crowns in group 0.2A and all of the crowns in group 0.2C failed during TCML. The fracture strength after 24 hours of the cemented 0.2 mm-thick crowns was significantly lower than that of adhesive bonded crowns. All cemented crowns provided fracture in the crown, while about 80% of the adhesively bonded crowns fractured through crown and die. CONCLUSION: 0.5 mm thick monolithic crowns possessed sufficient strength to endure physiologic performance, regardless of the type of cementation. Fracture strength of the 0.2 mm cemented crowns was too low for clinical application.
Adhesives
;
Cementation
;
Ceramics
;
Crowns
;
In Vitro Techniques
;
Survival Rate
;
Tooth Preparation
;
Water
;
Zinc
2.DPHL:A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery
Zhu TIANSHENG ; Zhu YI ; Xuan YUE ; Gao HUANHUAN ; Cai XUE ; Piersma R. SANDER ; Pham V. THANG ; Schelfhorst TIM ; Haas R.G.D. RICHARD ; Bijnsdorp V. IRENE ; Sun RUI ; Yue LIANG ; Ruan GUAN ; Zhang QIUSHI ; Hu MO ; Zhou YUE ; Winan J. Van Houdt ; Tessa Y.S. Le Large ; Cloos JACQUELINE ; Wojtuszkiewicz ANNA ; Koppers-Lalic DANIJELA ; B(o)ttger FRANZISKA ; Scheepbouwer CHANTAL ; Brakenhoff H. RUUD ; Geert J.L.H. van Leenders ; Ijzermans N.M. JAN ; Martens W.M. JOHN ; Steenbergen D.M. RENSKE ; Grieken C. NICOLE ; Selvarajan SATHIYAMOORTHY ; Mantoo SANGEETA ; Lee S. SZE ; Yeow J.Y. SERENE ; Alkaff M.F. SYED ; Xiang NAN ; Sun YAOTING ; Yi XIAO ; Dai SHAOZHENG ; Liu WEI ; Lu TIAN ; Wu ZHICHENG ; Liang XIAO ; Wang MAN ; Shao YINGKUAN ; Zheng XI ; Xu KAILUN ; Yang QIN ; Meng YIFAN ; Lu CONG ; Zhu JIANG ; Zheng JIN'E ; Wang BO ; Lou SAI ; Dai YIBEI ; Xu CHAO ; Yu CHENHUAN ; Ying HUAZHONG ; Lim K. TONY ; Wu JIANMIN ; Gao XIAOFEI ; Luan ZHONGZHI ; Teng XIAODONG ; Wu PENG ; Huang SHI'ANG ; Tao ZHIHUA ; Iyer G. NARAYANAN ; Zhou SHUIGENG ; Shao WENGUANG ; Lam HENRY ; Ma DING ; Ji JIAFU ; Kon L. OI ; Zheng SHU ; Aebersold RUEDI ; Jimenez R. CONNIE ; Guo TIANNAN
Genomics, Proteomics & Bioinformatics 2020;18(2):104-119
To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipe-line and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to gen-erate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000.