1.Spatiotemporal Mapping of the Oxytocin Receptor at Single-Cell Resolution in the Postnatally Developing Mouse Brain.
Hao LI ; Ying LI ; Ting WANG ; Shen LI ; Heli LIU ; Shuyi NING ; Wei SHEN ; Zhe ZHAO ; Haitao WU
Neuroscience Bulletin 2025;41(2):224-242
The oxytocin receptor (OXTR) has garnered increasing attention for its role in regulating both mature behaviors and brain development. It has been established that OXTR mediates a range of effects that are region-specific or period-specific. However, the current studies of OXTR expression patterns in mice only provide limited help due to limitations in resolution. Therefore, our objective was to generate a comprehensive, high-resolution spatiotemporal expression map of Oxtr mRNA across the entire developing mouse brain. We applied RNAscope in situ hybridization to investigate the spatiotemporal expression pattern of Oxtr in the brains of male mice at six distinct postnatal developmental stages (P7, P14, P21, P28, P42, P56). We provide detailed descriptions of Oxtr expression patterns in key brain regions, including the cortex, basal forebrain, hippocampus, and amygdaloid complex, with a focus on the precise localization of Oxtr+ cells and the variance of expression between different neurons. Furthermore, we identified some neuronal populations with high Oxtr expression levels that have been little studied, including glutamatergic neurons in the ventral dentate gyrus, Vgat+Oxtr+ cells in the basal forebrain, and GABAergic neurons in layers 4/5 of the cortex. Our study provides a novel perspective for understanding the distribution of Oxtr and encourages further investigations into its functions.
Animals
;
Receptors, Oxytocin/metabolism*
;
Male
;
Brain/growth & development*
;
Mice
;
Mice, Inbred C57BL
;
Neurons/metabolism*
;
Single-Cell Analysis
;
Gene Expression Regulation, Developmental
;
RNA, Messenger/metabolism*
;
Animals, Newborn
2.Effect and mechanism of vascular endothelial growth factor-A on pulmonary vascular remodeling in neonatal rats with hypoxic pulmonary hypertension.
Jing CAO ; Jia-Yuan LUO ; Dian WU ; Qian ZHAO ; Ming-Xia LI
Chinese Journal of Contemporary Pediatrics 2021;23(1):103-110
OBJECTIVE:
To study the role of vascular endothelial growth factor-A (VEGF-A) in pulmonary vascular remodeling in neonatal rats with hypoxic pulmonary hypertension (HPH) by regulating survivin (SVV).
METHODS:
A total of 96 neonatal rats were randomly divided into three groups: HPH+VEGF-A group, HPH group, and control group. Each group was further randomly divided into 3-, 7-, 10-, and 14-day subgroups (
RESULTS:
The HPH group had a significantly higher mean RVSP than the control and HPH+VEGF-A groups at each time point (
CONCLUSIONS
Prophylactic intratracheal administration of exogenous VEGF-A in neonatal rats with HPH can inhibit pulmonary vascular remodeling and reduce pulmonary arterial pressure by upregulating the expression of SVV in the early stage of hypoxia. This provides a basis for the interventional treatment of pulmonary vascular remodeling in neonatal HPH.
Animals
;
Animals, Newborn
;
Hypertension, Pulmonary/etiology*
;
Hypoxia
;
Pulmonary Artery
;
Rats
;
Rats, Wistar
;
Vascular Endothelial Growth Factor A
;
Vascular Remodeling
3.Intrauterine infection affects early growth and neurobehavioral development in neonatal rats.
Ying SHEN ; Yi SUN ; Weizhong GU ; Huimin YU ; Tianming YUAN
Journal of Zhejiang University. Medical sciences 2019;48(1):58-64
To explore the effects of intrauterine infection on early growth and neurobehavioral development in neonatal rats. (E. coli) was inoculated into uterine cervix of pregnant rats with gestation of 15 d to establish the intrauterine infection model, and the effect on the delivery of pregnant rats was observed. The neonatal rat brain tissue was stained with Hematoxylin-Eosin and the cerebral white matter damage was assessed. Immunohistochemical staining and Western blot analysis were performed to evaluate the expression of glial fibrillary acidic protein (GFAP), 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and neurofilament (NF) in pup brains. Birth weight and early growth development indices were monitored,and neurobehavioral tests were performed to access the change of neurobehavioral development in neonatal rats. The white blood cell count increased significantly in the uterus and placenta of the pregnant rats after intrauterine E. coli infection and no significant impact was observed on the delivery of pregnant rats. Weak staining and focal rarefaction of cerebral white matter from rats at P7 in intrauterine infection group were observed. The expression of GFAP markedly increased (<0.05) in infection group, while the level of CNPase and NF in pup brains at P7 significantly decreased (<0.05 or <0.01). Compared with control group, the neonatal rats in infection group had lower birth weight and slower weight gain during the suckling period (<0.05 or <0.01), and the completion times of ear opening, eye opening, surface righting, negative geotaxis, acoustic startle and swimming test in infection group were significantly delayed (<0.05 or <0.01). Intrauterine infection in pregnant rats can induce cerebral white matter damage and retardation of early growth and neurobehavioral development in neonatal rats.
Animals
;
Animals, Newborn
;
Behavior, Animal
;
Body Weight
;
Disease Models, Animal
;
Escherichia coli
;
Escherichia coli Infections
;
complications
;
physiopathology
;
Female
;
Glial Fibrillary Acidic Protein
;
genetics
;
Growth Disorders
;
etiology
;
Leukoencephalopathies
;
etiology
;
Pregnancy
;
Pregnancy Complications, Infectious
;
physiopathology
;
Rats
;
Rats, Sprague-Dawley
4.Comparison of Two Cultured Astrocytes.
Acta Academiae Medicinae Sinicae 2019;41(4):524-528
To compare the biological functions of astrocytes cultured by two methods. Methods The primary astrocytes were cultured from rodent neonatal brain,whereas the differentiated astrocytes were prepared by differentiating neural stem cells with fetal bovine serum.The morphologies of these two different types of astrocytes were observed under microscope and the expression of glial fibrillary acidic protein(GFAP),an astrocyte-specific marker,was detected by immunofluorescence staining after treatment with 10 cytokines.Changes in GFAP,glutamate synthetase(GS),glutamate-aspartic acid transporter(xCT),neuregulin-1(NRG),N-methyl-D-aspartic acid receptor(NMDA),lipoprotein lipase(LPL)were detected and compared. Results The morphologies and GFAP expression differed between these two astrocyte types.Microarray showed that the expressions of GFAP,GS,xCT,NRG,NMDA,and LPL were significantly higher in primary astrocytes than in differentiated astrocytes.None of these 10 cytokines increased the expression of GFAP in primary astrocytes,whereas treatment with transforming growth factor-β(TGF-β)significantly increased the expression of GFAP in the differentiated astrocytes. Conclusion Compared with the differentiated astrocytes,the primary astrocytes are more similar to reactive astrocytes,and TGF-β can promote the transition of differentiated cells to reactive cells.
Animals
;
Animals, Newborn
;
Astrocytes
;
cytology
;
Cell Differentiation
;
Cells, Cultured
;
Glial Fibrillary Acidic Protein
;
metabolism
;
Neural Stem Cells
;
cytology
;
Rodentia
;
Transforming Growth Factor beta
;
pharmacology
5.Influence of general anesthetic exposure in developing brain on cognition and the underlying mechanisms.
Xin ZHAO ; Li-Jun HAO ; Yu-Tong ZHANG ; Yu ZHANG ; Ce ZHANG
Acta Physiologica Sinica 2019;71(5):749-759
With the evolution of medical techniques and technology, an increasing number of infants, neonates, and fetuses are exposed to general anesthesia for clinical diagnostic and therapeutic process. The neurotoxic effects of general anesthetics on developing brain have been a subject of concern and considerable research interest. Population-based study confirmed that single short-term general anesthetic exposure does not affect nervous system function, but multiple exposures to general anesthesia could damage cognitive function. Animal studies further discovered the underlying mechanisms. Nervous system is most susceptible to general anesthetics during the brain growth spurt. The time-point is more critical than the duration of exposure to general anesthetics. General anesthetics can induce intracellular calcium overload, disturb energy metabolism, promote cell apoptosis and lead to cell loss. General anesthetics can damage synaptic structure, transmission and plasticity, and impair brain function. High throughput omics technologies have been used to screen the differentially expressed genes induced by general anesthetics, which provide further understanding of the mechanism of general anesthetics affecting cognitive function. This review provides an update on the pathophysiologic mechanisms underlying the anesthesia-neurotoxicity, which will be helpful to provide instructions for the clinical use of general anesthesia in children.
Anesthesia, General
;
adverse effects
;
Anesthetics, General
;
adverse effects
;
Animals
;
Brain
;
drug effects
;
growth & development
;
Cognition
;
Female
;
Humans
;
Infant
;
Infant, Newborn
;
Pregnancy
;
Prenatal Exposure Delayed Effects
;
physiopathology
6.Recombinant Human Erythropoietin Augments Neovascularization Responses in a Neonatal Rat Model of Premature Brain Damage by Phosphatidylinositol 3 Kinase/Akt Pathway.
Da-Fan YU ; Li-Hua ZHU ; Li JIANG
Chinese Medical Journal 2017;130(7):854-858
BACKGROUNDRecombinant human-erythropoietin (rh-EPO) has therapeutic efficacy for premature infants with brain damage during the active rehabilitation and anti-inflammation. In the present study, we found that the rh-EPO was related to the promotion of neovascularization. Our aim was to investigate whether rh-EPO augments neovascularization in the neonatal rat model of premature brain damage through the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway.
METHODSPostnatal day 5 (PD5), rats underwent permanent ligation of the right common carotid artery and were exposed to hypoxia for 2 h. All the rat pups were randomized into five groups as follows: (1) control group; (2) hypoxia-ischemic (HI) group; (3) HI + LY294002 group; (4) HI + rh-EPO group; and (5) HI + rh-EPO + LY294002 group. The phospho-Akt protein was tested 90 min after the whole operation, and CD34, vascular endothelial growth factor receptor 2 (VEGFR2), and vascular endothelial growth factor (VEGF) were also tested 2 days after the whole operation.
RESULTSIn the hypoxic and ischemic zone of the premature rat brain, the rh-EPO induced CD34+ cells to immigrate to the HI brain zone (P < 0.05) and also upregulated the VEGFR2 protein expression (P < 0.05) and VEGF mRNA level (P < 0.05) through the PI3K/Akt (P < 0.05) signaling pathway when compared with other groups.
CONCLUSIONSThe rh-EPO treatment augments neovascularization responses in the neonatal rat model of premature brain damage through the PI3K/Akt signaling pathway. Besides, the endogenous EPO may exist in the HI zone of rat brain and also has neovascularization function through the PI3K/Akt signaling pathway.
Animals ; Animals, Newborn ; Antigens, CD34 ; metabolism ; Brain ; drug effects ; metabolism ; pathology ; Disease Models, Animal ; Erythropoietin ; genetics ; metabolism ; therapeutic use ; Female ; Humans ; Hypoxia-Ischemia, Brain ; drug therapy ; metabolism ; Neovascularization, Physiologic ; drug effects ; Phosphatidylinositol 3-Kinase ; metabolism ; Pregnancy ; Proto-Oncogene Proteins c-akt ; metabolism ; Rats ; Rats, Sprague-Dawley ; Recombinant Proteins ; genetics ; metabolism ; therapeutic use ; Signal Transduction ; drug effects ; Vascular Endothelial Growth Factor A ; genetics ; Vascular Endothelial Growth Factor Receptor-2 ; metabolism
7.Effects of bone marrow mesenchymal stem cell transplantation on retinal neovascularization in neonatal rats with oxygen-induced retinopathy.
Qing-Jie MU ; Yue-Hua ZHAO ; Dan-Dan CHENG ; Hai-Yu WANG ; Lan-Fen CHEN ; Yan-Song ZHAO ; Xiao-Li WANG
Chinese Journal of Contemporary Pediatrics 2017;19(11):1202-1207
OBJECTIVETo explore the effects of rat bone mesenchymal stem cell (BMSC) transplantation on retinal neovascularization, and to observe the changes of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factors (VEGF) in rats with oxygen-induced retinopathy (OIR).
METHODSSeventy-two seven-day-old Sprague-Dawley rats were randomly divided into three groups: normal control (CON), model (OIR) and BMSC transplantation. In the BMSC transplantation group, BMSCs were transplanted 5 days after oxygen conditioning. The phosphate buffered saline of the same volume was injected in the CON and OIR groups. The OIR model was prerpared according to the classic hyperoxygen method. At seven days after transplantation, retinal neovascularization was examined by retinal flat-mount staining and hematoxylin eosin (HE) staining. The expression of HIF-1α and VEGF proteins was examined by immunohistochemistry staining and Western blot analysis.
RESULTSThe retinal flat-mount staining results showed that the vessels were well organized in the CON group, but the vessels were irregularly organized, and lots of nonperfusion areas were observed in the OIR group. The large vessels were a bit circuitous, the retinal vessels were relatively organized, and less nonperfusion areas were noted in the BMSC transplantation group. The HE staining results showed that many neovessels and preretinal neovascular (pre-RNC) cells were observed on the internal limiting membrane in the OIR group. There were less pre-RNC cells in the BMSC transplantation group compared with the OIR group (P<0.01). The immunohistochemistry analysis showed that more HIF-1αand VEGFcells were observed in the OIR group compared with the CON group, and less HIF-1αand VEGFcells were observed in the BMSC transplantation group compared with OIR group (P<0.05). The Western blot analysis showed the expression of HIF-1α and VEGF proteins in the OIR group was significantly higher than that in the CON group. The expression of HIF-1α and VEGF proteins in the BMSC transplantation group was lower than that in the OIR group (P<0.01).
CONCLUSIONSBMSC transplantation therapy could alleviate retinal neovascularization in OIR rats, and its mechanisms might be associated with the inhibition of the expression of HIF-1α and VEGF proteins.
Animals ; Animals, Newborn ; Female ; Hypoxia-Inducible Factor 1, alpha Subunit ; analysis ; Male ; Mesenchymal Stem Cell Transplantation ; Rats ; Rats, Sprague-Dawley ; Retina ; chemistry ; Retinal Neovascularization ; prevention & control ; Retinopathy of Prematurity ; metabolism ; therapy ; Vascular Endothelial Growth Factor A ; analysis
8.Reduction in hypoxia-derived neuroinflammation and dysfunctional glutamate transporters by minocycline may restore hypoxia-injured cognition of neonatal rat.
Hong-Chun LI ; Jie XIAO ; Yi-Long HUANG ; Long-Jun LI ; Hong JIANG ; Li-Xuan HUANG ; Ting YANG ; Ling YANG ; Fan LI
Acta Physiologica Sinica 2016;68(2):148-156
The aim of the present study was to investigate the effects of minocycline on cognitive functions in neonatal rat after hypoxia exposure and the underlying mechanism. A model of hypoxic brain damage (HBD) was developed by exposing postnatal 1 day (P1) rats to systemic hypoxia. The rats were intraperitoneally injected with normal saline (Hy group) or minocycline (Hy + M group) 2 h after hypoxia exposure. Some other P1 rats that were not subjected to systemic hypoxia were used as normal control (NG group). The Y-maze test was used to evaluate learning and memory ability on postnatal day 30. Inflammatory mediators (Iba-1, IL-1β, TNF-α and TGF-β1), glutamate transporters (EAAT1 and EAAT2), total Tau and phosphorylated Tau (phosphorylation sites: Tyr18, Thr205, Thr231, Ser396 and Ser404) protein expressions in the hippocampus were detected by Western blot 7 d after hypoxic exposure. The results showed that hypoxia induced learning and memory impairments of the neonatal rats, and minocycline administration could reverse the effects of hypoxia. The protein expression levels of Iba-1, IL-1β, TNF-α, EAAT2 and Tau phosphorylated at T231 were increased, but the total Tau expression was decreased in the hippocampus of the rats from Hy group 7 d after hypoxia exposure. In the hypoxia-treated rats, minocycline down-regulated Iba-1, IL-1β, TNF-α and EAAT2 protein expressions significantly, but did not affect total Tau and phosphorylated Tau protein expressions. Our results suggest that minocycline can prevent cognitive deficits of rats with hypoxia exposure, and the underlying mechanism may involve the inhibition of neuroinflammation and dysfunctional glutamate transporters but not the regulation of the Tau hyperphosphorylation.
Amino Acid Transport System X-AG
;
Animals
;
Animals, Newborn
;
Cognition
;
Cognition Disorders
;
Disease Models, Animal
;
Glutamates
;
Hippocampus
;
Hypoxia
;
Inflammation
;
Learning
;
Memory
;
Memory Disorders
;
Minocycline
;
Phosphorylation
;
Rats
;
Transforming Growth Factor beta1
;
Tumor Necrosis Factor-alpha
;
tau Proteins
9.Effect of antepartum taurine supplementation in regulating the activity of Rho family factors and promoting the proliferation of neural stem cells in neonatal rats with fetal growth restriction.
Xiang-Wen LI ; Fang LI ; Jing LIU ; Yan WANG ; Wei FU
Chinese Journal of Contemporary Pediatrics 2016;18(11):1158-1165
OBJECTIVETo study the possible effect of antepartum taurine supplementation in regulating the activity of Rho family factors and promoting the proliferation of neural stem cells in neonatal rats with fetal growth restriction (FGR), and to provide a basis for antepartum taurine supplementation to promote brain development in children with FGR.
METHODSA total of 24 pregnant Sprague-Dawley rats were randomly divided into three groups: control, FGR, and taurine (n=8 each ). A rat model of FGR was established by food restriction throughout pregnancy. RT-PCR, immunohistochemistry, and Western blot were used to measure the expression of the specific intracellular markers for neural stem cells fatty acid binding protein 7 (FABP7), Rho-associated coiled-coil containing protein kinase 2 (ROCK2), ras homolog gene family, member A (RhoA), and Ras-related C3 botulinum toxin substrate (Rac).
RESULTSThe FGR group had significantly lower OD value of FABP7-positive cells and mRNA and protein expression of FABP7 than the control group, and the taurine group had significantly higher OD value of FABP7-positive cells and mRNA and protein expression of FABP7 than the FGR group (P<0.05). The FGR group had significantly higher mRNA expression of RhoA and ROCK2 than the control group. The taurine group had significantly higher mRNA expression of RhoA and ROCK2 than the control group and significantly lower expression than the FGR group (P<0.05). The FGR group had significantly lower mRNA expression of Rac than the control group. The taurine group had significantly higher mRNA expression of Rac than the FGR and control groups (P<0.05). The FGR group had significantly higher protein expression of RhoA and ROCK2 than the control group. The taurine group had significantly lower protein expression of RhoA and ROCK2 than the FGR group (P<0.05).
CONCLUSIONSAntepartum taurine supplementation can promote the proliferation of neural stem cells in rats with FGR, and its mechanism may be related to the regulation of the activity of Rho family factors.
Animals ; Animals, Newborn ; Body Weight ; drug effects ; Brain ; drug effects ; Cell Proliferation ; drug effects ; Fatty Acid-Binding Protein 7 ; analysis ; Female ; Fetal Growth Retardation ; drug therapy ; Male ; Neural Stem Cells ; drug effects ; physiology ; Rats ; Rats, Sprague-Dawley ; Taurine ; pharmacology ; rho-Associated Kinases ; analysis ; genetics ; rhoA GTP-Binding Protein ; analysis ; genetics
10.Role of STAT3 signaling pathway in hypoxic-ischemic brain damage of neonatal rats.
Rui DENG ; Feng-Yan ZHAO ; Li ZHANG ; De-Yuan LI ; De-Zhi MU
Chinese Journal of Contemporary Pediatrics 2016;18(1):78-84
OBJECTIVETo study the role and mechanisms of STAT3 signaling pathway in hypoxic-ischemic brain damage (HIBD) of neonatal rats.
METHODSEighty 7-day-old Sprague-Dawley rats were randomly divided into two groups: HI and sham-operated (n=40 each). The rats in the HI group were subjected to right carotid artery ligation and subsequent hypoxia exposure (8% O2) for 2.5 hours, and the rats in the sham-operated group underwent the right carotid artery dissection without subsequent ligation or hypoxia treatment. Brain tissue samples were collected at 4, 6, 8, 12 and 24 hours after operation and hypoxic exposure. Immunohistochemistry and Western blot were used to detect the expression of STAT3, phosphorylated STAT3 (p-STAT3) and vascular endothelial growth factor (VEGF) proteins. TUNEL staining was used to detect apoptotic cells.
RESULTSNo significant difference in STAT3 expression was observed at all time points between the HI and sham-operated groups (P>0.05). Compared with the sham-operated group, the expression of p-STAT3 protein in the HI group was significantly upregulated at 4, 6, 8, 12 hours after operation and hypoxic exposure, and peaked at 6 hours (P<0.01). The VEGF expression in the HI group was higher than that in the sham-operated group at all time points, which peaked at 8 hours (P<0.05). TUNEL staining showed that the apoptotic cells increased significantly in a time-dependent manner compared with the sham-operated group (P<0.01).
CONCLUSIONSHI may lead to phosphorylation of STAT3 which probably induces the VEGF expression in the brain of neonatal rats. The activated STAT3 signaling pathway may be involved in the apoptosis regulation of nerve cells, and related to apoptosis inhibition of nerve cells.
Animals ; Animals, Newborn ; Female ; Hypoxia-Ischemia, Brain ; metabolism ; Male ; Phosphorylation ; Rats ; Rats, Sprague-Dawley ; STAT3 Transcription Factor ; physiology ; Signal Transduction ; physiology ; Vascular Endothelial Growth Factor A ; analysis

Result Analysis
Print
Save
E-mail