1.Inhibitory effect of cabozantinib against Listeria monocytogenes invasion in Caco-2 cells in vitro.
Lei DU ; Qing ZENG ; Xiao-Long HE ; Jia-Wen QIU ; Hao-Yu SONG ; Tong-Wei WU ; Dan-Xian CAI ; Min LONG ; Jun LUO ; Hong CAO
Journal of Southern Medical University 2016;36(2):226-231
OBJECTIVETo investigate the effect of c-Met inhibitor cabozantinib (XL-184) in inhibiting Listeria monocytogenes (LM) from invading Caco-2 cells to reduce the cell injury.
METHODSThe cell invasion capacity of LM was assayed in Caco-2 cells incubated with different doses of XL-184 for different durations. Caco-2 cells incubated with XL-184 were seeded on the upper room of the transwell chamber, and the cell monolayer was exposed to LM infection followed by addition of horseradish peroxidase (HRP). The trans-epithelial electric resistance (TEER), HRP concentration and LM colony-forming unit (CFU) were measured in the cell monolayer. Fluorescent staining was used to evaluate the cell viability, and LDH release from the cells was examined to assess the changes in cell membrane permeability.
RESULTSXL-184 significantly decreased LM invasion rate in Caco-2 cells in a dose- and time-dependent manner (P=0.000), and this effect was enhanced by co-incubation of the cells with ampicillin (P<0.05). In the cell membrane permeability assay in the monolayer cells, XL-184 markedly inhibited LM-induced reduction of TEER (P<0.05) and significantly suppressed LM-induced enhancement of cell membrane permeability shown by reduced HRP concentration and LM count in the lower chamber (P=0.000). The cells infected with LM showed significantly lowered cell viability, which was rescued by XL-184 (P<0.01); XL-184 also dose-dependently reduced LDH release from the cells (P<0.05).
CONCLUSIONSXL-184 can suppress LM invasion in Caco-2 cells to reduce the cell injury, suggesting its value as a promising candidate agent for prevention and treatment of LM infections.
Anilides ; pharmacology ; Caco-2 Cells ; Cell Membrane Permeability ; drug effects ; Cell Survival ; Humans ; Listeria monocytogenes ; drug effects ; Pyridines ; pharmacology
2.Curcumin inhibited rat colorectal carcinogenesis by activating PPAR-γ: an experimental study.
Liu-bin LIU ; Chang-nong DUAN ; Zeng-yi MA ; Gang XU
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(4):471-475
OBJECTIVETo explore the chemopreventive effect of curcumin on DMH induced colorectal carcinogenesis and the underlining mechanism.
METHODSTotally 40 Wistar rats were divided into the model group and the curcumin group by random digit table, 20 in each group. Meanwhile, a normal control group was set up (n =10). A colorectal cancer model was induced by subcutaneously injecting 20 mg/kg DMH. The tumor incidence and the inhibition rate were calculated. The effect of curcumin on the expression of peroxisome proliferator-activated receptor gamma (PPARγ) in rat colon mucosal tissues was observed using immunohistochemistry and Western blot. HT 29 cell line were cultured and divided into a control group, the curcumin + GW9662 (2-chloro-5-nitro-N-4-phenylbenzamide) intervention group, and the curcumin group. The inhibition of different concentrations curcumin on HT29 cell line was detected using MTT. The expression of curcumin on PPARy was also detected using Western blot.
RESULTSThe tumor incidence was 80. 00% (12/15 cases) in the model group, obviously higher than that of the curcumin group (58. 82%, 10/17 cases, P <0. 05). The inhibition rate of curcumin on DMH induced colorected carcinoma reached 26. 46%. Compared with the normal control group, the expression of PPARγ protein was significantly increased in the curcumin group and the model group (P <0. 01). Compared with the model group at the same time point, the expression of PPARy protein was significantly enhanced in the curcumin group (P <0. 05). MTT analysis showed that curcumin could inhibit the proliferation of in vitro HT 29 cells in dose and time dependent manners. The expression of PPARy protein was significantly increased in the GW9662 group and the curcumin group, showing statistical difference when compared with the normal control group (P <0. 01). Compared with the GW9662 group, the expression of PPARγ protein was significantly increased in the curcumin group (P <0. 01).
CONCLUSIONCurcumin could inhibit DMH-induced rat colorectal carcinogenesis and the growth of in vitro cultured HT 29 cell line, which might be achieved by activating PPARy signal transduction pathway.
Anilides ; Animals ; Carcinogenesis ; Colorectal Neoplasms ; drug therapy ; metabolism ; Curcumin ; pharmacology ; therapeutic use ; PPAR gamma ; metabolism ; Rats ; Rats, Wistar ; Signal Transduction
3.Pharmacological Activation of RXR-α Promotes Hematoma Absorption via a PPAR-γ-dependent Pathway After Intracerebral Hemorrhage.
Chaoran XU ; Huaijun CHEN ; Shengjun ZHOU ; Chenjun SUN ; Xiaolong XIA ; Yucong PENG ; Jianfeng ZHUANG ; Xiongjie FU ; Hanhai ZENG ; Hang ZHOU ; Yang CAO ; Qian YU ; Yin LI ; Libin HU ; Guoyang ZHOU ; Feng YAN ; Gao CHEN ; Jianru LI
Neuroscience Bulletin 2021;37(10):1412-1426
Endogenously eliminating the hematoma is a favorable strategy in addressing intracerebral hemorrhage (ICH). This study sought to determine the role of retinoid X receptor-α (RXR-α) in the context of hematoma absorption after ICH. Our results showed that pharmacologically activating RXR-α with bexarotene significantly accelerated hematoma clearance and alleviated neurological dysfunction after ICH. RXR-α was expressed in microglia/macrophages, neurons, and astrocytes. Mechanistically, bexarotene promoted the nuclear translocation of RXR-α and PPAR-γ, as well as reducing neuroinflammation by modulating microglia/macrophage reprograming from the M1 into the M2 phenotype. Furthermore, all the beneficial effects of RXR-α in ICH were reversed by the PPAR-γ inhibitor GW9662. In conclusion, the pharmacological activation of RXR-α confers robust neuroprotection against ICH by accelerating hematoma clearance and repolarizing microglia/macrophages towards the M2 phenotype through PPAR-γ-related mechanisms. Our data support the notion that RXR-α might be a promising therapeutic target for ICH.
Anilides/pharmacology*
;
Cerebral Hemorrhage/drug therapy*
;
Hematoma/drug therapy*
;
Humans
;
Macrophages
;
Microglia
;
Neuroprotection
;
PPAR gamma
;
Retinoid X Receptor alpha
4.Metabotropic glutamate receptor 8 activation promotes the apoptosis of lung carcinoma A549 cells in vitro.
Tian-Jiao LI ; Yan-Hong HUANG ; Xi CHEN ; Zhou ZHOU ; Si-Wei LUO ; Dan-Dan FENG ; Jian-Zhong HAN ; Zi-Qiang LUO
Acta Physiologica Sinica 2015;67(5):513-520
This study aims to detect the expression of metabotropic glutamate receptors (mGluRs) in lung carcinoma A549 cells, and to investigate the effects of mGluR8 and mGluR4 activation on the growth of A549 cells in vitro. The mRNA expression levels of the 8 subtypes of mGluRs in A549 cells were determined by real-time PCR. Immunohistochemistry was used to analyze the protein expression of mGluR4 and mGluR8 in A549 cells and lung tissue sections obtained from lung adenocarcinoma patients. To observe the effects of mGluR8 and mGluR4 activation on the growth of A549 cells, the cultured cells were treated with (S)-3,4-DCPG (an agonist of mGluR8) and VU0155041 (an agonist of mGluR4), respectively, and then the cell viability was analyzed by CCK-8 kit, the percentage of DNA synthesis was detected by EdU incorporation, and the apoptosis of the cells was measured by hoechst 33258 staining and flow cytometry. The results showed that there were low expressions of mGluR1, mGluR5, mGluR6, mGluR7 mRNA, no expression of mGluR2 and mGluR3 mRNA, and high expressions of mGluR8 and mGluR4 mRNA in A549 cells. Accordingly, there were also mGluR4 and mGluR8 protein expressions in the A549 cells and the lung adenocarcinoma tissue sections. VU0155041 had no effect on the growth of A549 cells, but (S)-3,4-DCPG significantly decreased the cells' growth in a dose-dependent manner and increased the apoptosis of the cells. The results revealed a role of mGluR8 in the growth and apoptosis of A549 cells and suggested a potential target for clinical treatment of lung cancer.
Anilides
;
pharmacology
;
Apoptosis
;
Benzoates
;
pharmacology
;
Cell Cycle
;
Cell Line, Tumor
;
Cell Proliferation
;
Cyclohexanecarboxylic Acids
;
pharmacology
;
Glycine
;
analogs & derivatives
;
pharmacology
;
Humans
;
Lung Neoplasms
;
pathology
;
Receptors, Metabotropic Glutamate
;
physiology
5.Rapamycin enhances the anti-tumor activity of cabozantinib in cMet inhibitor-resistant hepatocellular carcinoma.
Chao GAO ; Shenghao WANG ; Weiqing SHAO ; Yu ZHANG ; Lu LU ; Huliang JIA ; Kejin ZHU ; Jinhong CHEN ; Qiongzhu DONG ; Ming LU ; Wenwei ZHU ; Lunxiu QIN
Frontiers of Medicine 2022;16(3):467-482
Cabozantinib, mainly targeting cMet and vascular endothelial growth factor receptor 2, is the second-line treatment for patients with advanced hepatocellular carcinoma (HCC). However, the lower response rate and resistance limit its enduring clinical benefit. In this study, we found that cMet-low HCC cells showed primary resistance to cMet inhibitors, and the combination of cabozantinib and mammalian target of rapamycin (mTOR) inhibitor, rapamycin, exhibited a synergistic inhibitory effect on the in vitro cell proliferation and in vivo tumor growth of these cells. Mechanically, the combination of rapamycin with cabozantinib resulted in the remarkable inhibition of AKT, extracellular signal-regulated protein kinases, mTOR, and common downstream signal molecules of receptor tyrosine kinases; decreased cyclin D1 expression; and induced cell cycle arrest. Meanwhile, rapamycin enhanced the inhibitory effects of cabozantinib on the migration and tubule formation of human umbilical vascular endothelial cells and human growth factor-induced invasion of cMet inhibitor-resistant HCC cells under hypoxia condition. These effects were further validated in xenograft models. In conclusion, our findings uncover a potential combination therapy of cabozantinib and rapamycin to combat cabozantinib-resistant HCC.
Anilides/pharmacology*
;
Animals
;
Carcinoma, Hepatocellular/drug therapy*
;
Cell Line, Tumor
;
Cell Proliferation
;
Endothelial Cells/metabolism*
;
Humans
;
Liver Neoplasms/drug therapy*
;
Pyridines/pharmacology*
;
Sirolimus/pharmacology*
;
Xenograft Model Antitumor Assays
6.Effect of the sonic hedgehog inhibitor GDC-0449 on an in vitro isogenic cellular model simulating odontogenic keratocysts.
Jiemei ZHAI ; Heyu ZHANG ; Jianyun ZHANG ; Ran ZHANG ; Yingying HONG ; Jiafei QU ; Feng CHEN ; Tiejun LI
International Journal of Oral Science 2019;11(1):4-4
Odontogenic keratocysts (OKCs) are common cystic lesions of odontogenic epithelial origin that can occur sporadically or in association with naevoid basal cell carcinoma syndrome (NBCCS). OKCs are locally aggressive, cause marked destruction of the jaw bones and have a propensity to recur. PTCH1 mutations (at ∼80%) are frequently detected in the epithelia of both NBCCS-related and sporadic OKCs, suggesting that PTCH1 inactivation might constitutively activate sonic hedgehog (SHH) signalling and play a major role in disease pathogenesis. Thus, small molecule inhibitors of SHH signalling might represent a new treatment strategy for OKCs. However, studies on the molecular mechanisms associated with OKCs have been hampered by limited epithelial cell yields during OKC explant culture. Here, we constructed an isogenic PTCH1 cellular model of PTCH1 inactivation by introducing a heterozygous mutation, namely, c.403C>T (p.R135X), which has been identified in OKC patients, into a human embryonic stem cell line using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. This was followed by the induction of epithelial differentiation. Using this in vitro isogenic cellular model, we verified that the PTCH1 heterozygous mutation causes ligand-independent activation of SHH signalling due to PTCH1 haploinsufficiency. This activation was found to be downregulated in a dose-dependent manner by the SHH pathway inhibitor GDC-0449. In addition, through inhibition of activated SHH signalling, the enhanced proliferation observed in these induced cells was suppressed, suggesting that GDC-0449 might represent an effective inhibitor of the SHH pathway for use during OKC treatment.
Anilides
;
pharmacology
;
Basal Cell Nevus Syndrome
;
Hedgehog Proteins
;
genetics
;
pharmacology
;
Humans
;
Molecular Targeted Therapy
;
Odontogenic Cysts
;
genetics
;
physiopathology
;
therapy
;
Odontogenic Tumors
;
genetics
;
physiopathology
;
therapy
;
Pyridines
;
pharmacology
7.Effect of 15-Deoxy-△(12,14)-prostaglandin J2 on Expression of Macrophage Migration Inhibitory Factor in Mouse Monocyte/macrophage Cell Line J774A.1.
Wei-Yang LI ; Yu-Meng SHI ; Xin LIU ; Lin YANG ; Li-Ying L I
Acta Academiae Medicinae Sinicae 2016;38(3):247-252
Objective To investigate the effect of 15-Deoxy-△(12,14)-prostaglandin J2 (15 d-PGJ2) on the expression of macrophage migration inhibitory factor (MIF) and its underlying mechanism in J774A.1. Methods The murine monocyte/macrophage cell line J774A.1 were divided into six groups:lipopolysaccharide (LPS) group,incubated with 1 μg/ml LPS for 1 h;normal control group,incubated with PBS for 1 h;negative control group,incubated with 5 μmol/L 15 d-PGJ2 for 1 h;15 d-PGJ2 group,incubated with 5 μmol/L 15 d-PGJ2 for 1 h followed by 1 μg/ml LPS for 1 h;GW9662 group,incubated with 5 μmol/L 15 d-PGJ2 for 1 h following GW9662 10 μmol/L for 1 h,and then incubated with 1 μg/ml LPS for 1 h;and Vehicle group,control of GW9662,GW9662 was replaced by its solvent DMSO. The expression of MIF was detected via immunofluorescence and agarose gel electrophoresis. RT-qPCR and Western blotting were used to test whether 15 d-PGJ2 could regulate mRNA and protein expression of MIF in J774A.1 upon LPS challenge. The effect of peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist GW9662 on the regulation of MIF by 15 d-PGJ2 was observed. The effects of 15 d-PGJ2 on the nuclear translocation of PPAR-γ upon LPS challenge were detected via high content screening analysis. Results MIF DNA and protein expressions were detected in J774A.1. MIF mRNA expression was up-regulated (1.75±0.09,P=0.037) when challenged with LPS and 15 d-PGJ2 inhibited its upregulation (0.84±0.08,P=0.026) in J774A.1. The protein level was consistent with the mRNA level. PPAR-γ antagonist GW9662 reversed the effect of 15 d-PGJ2 (mRNA,1.48±0.06,P=0.016;protein,1.28). Furthermore,nuclear translocation of PPAR-γ was regulated by 15 d-PGJ2 in J774A.1 upon LPS challenge(1.39±0.02 vs. 1.01±0.03,P=0.003). Conclusion 15 d-PGJ2 may down-regulate the MIF expression in J774A.1 in a PPAR-γ-dependent manner.
Anilides
;
pharmacology
;
Animals
;
Cell Line
;
Intramolecular Oxidoreductases
;
metabolism
;
Lipopolysaccharides
;
Macrophage Migration-Inhibitory Factors
;
metabolism
;
Mice
;
Monocytes
;
drug effects
;
PPAR gamma
;
antagonists & inhibitors
;
Prostaglandin D2
;
analogs & derivatives
;
pharmacology
8.Effects of pioglitazone on TGFbeta1 expression in ischemia/reperfusion injury myocardium of rats.
Hao WANG ; Ping YE ; Yang LI ; Zong-Bin LI ; Lin WANG
Chinese Journal of Applied Physiology 2013;29(1):1-4
OBJECTIVETo investigate the effects of pioglitazone on transforming growth factor beta1 (TGFbeta1) expression in ischemia/reperfusion injury myocardium of rats.
METHODSThirty SD rats were randomly divided into five groups (n = 6): ischemia/reperfusion group, pioglitazone 5 mg/(kg x d) group, pioglitazone 10 mg/(kg x d) group, pioglitazone 20 mg/(kg x d) group and pioglitazone 20 mg/(kg x d) + peroxisome proliferator-activated receptor gamma (PPARgamma) specific antagonist GW9662 group. Left anterior descending coronary artery of rats were ligated for 30 min and reperfused for 120 min to establish the model of ischemia/reperfusion in vivo. RT-PCR was performed to detect the expression of TGFbeta1 mRNA. Western blot was performed to detect the expression of TGFbeta1 protein.
RESULTSMyocardial apoptosis was significantly suppressed by pioglitazone. Pioglitazone upregulated TGFPbeta1 expression both in mRNA and protein level. GW9662 reversed the inhibition of myocardial apoptosis and the upregulation of TGFbeta1 expression by pioglitazone.
CONCLUSIONPioglitazone can inhibit the myocardial apoptosis induced by ischemia/reperfusion. Pioglitazone may protect the myocardium from ischemia/reperfusion via upregulation of TGFbeta1. This protection may be mediated by PPARgamma.
Anilides ; pharmacology ; Animals ; Apoptosis ; Male ; Myocardial Reperfusion Injury ; metabolism ; Myocardium ; metabolism ; PPAR gamma ; antagonists & inhibitors ; Rats ; Rats, Sprague-Dawley ; Thiazolidinediones ; pharmacology ; Transforming Growth Factor beta1 ; metabolism
9.Activation of PPARγ pathway enhances cellular anti-oxidant capacity to protect long-term cultured primary rat neural cells from apoptosis.
Huqing WANG ; Jiaxin FAN ; Wanying CHEN ; Zhen GAO ; Guilian ZHANG ; Haiqin WU ; Xiaorui YU
Journal of Southern Medical University 2019;39(1):23-29
OBJECTIVE:
To study the protective effect of enhanced peroxisome proliferator activated receptor γ (PPARγ) pathway against apoptosis of long-term cultured primary nerve cells.
METHODS:
A natural aging model was established in primary rat nerve cells by long-term culture for 22 days. The cells were divided into control group, 0.1, 1.0, 5.0, and 10 μmol/L GW9662 intervention groups, and 0.1, 1.0, 5.0, and 10 μmol/L pioglitazone intervention groups. The cell viability was assessed using MTT assay and the cell morphological changes were observed after the treatments to determine the optimal concentrations of GW9662 and pioglitazone. Double immunofluorescence labeling and flow cytometry were used to observe the changes in the number of viable cells and cell apoptosis following the treatments; immunocytochemical staining was used to assess the changes in the anti-oxidation ability of the treated cells.
RESULTS:
The optimal concentrations of GW9662 and pioglitazone determined based on the cell viability and morphological changes were both 1 μmol/L. Compared with the control group, GW9662 treatment significantly lowered while pioglitazone significantly increased the total cell number and nerve cell counts ( < 0.05), and nerve cells in the cell cultures maintained a constant ratio at about 80% in all the groups ( > 0.05). GW9662 significantly enhanced while pioglitazone significantly lowered the cell apoptosis rates compared with the control group ( < 0.05). GW9662 obviously lowered SOD activity and GSH content in G group ( < 0.05) and increased MDA content in the cells ( < 0.05), and pioglitazone resulted in reverse changes in SOD, GSH and MDA contents in the cells ( < 0.05).
CONCLUSIONS
Activation of PPARγ pathway protects long-term cultured primary nerve cells by enhancing cellular anti-oxidant capacity and reducing cell apoptosis, suggesting a potential strategy for anti-aging treatment of the nervous system through intervention of the PPARγ pathway.
Anilides
;
administration & dosage
;
pharmacology
;
Animals
;
Apoptosis
;
Cell Proliferation
;
Cell Survival
;
Cells, Cultured
;
Cellular Senescence
;
physiology
;
Neurons
;
cytology
;
PPAR gamma
;
metabolism
;
Pioglitazone
;
administration & dosage
;
pharmacology
;
Rats
10.Exenatide promotes chemotactic migration of adipose-derived stem cells through SDF-1/CXCR-4/Rho GTPase pathway.
Qiang MA ; Jun-Jie YANG ; Hao ZHOU ; Ying ZHANG ; Yun-Dai CHEN
Journal of Southern Medical University 2016;36(8):1034-1040
OBJECTIVETo investigate the effect of exenatide on chemotactic migration of adipose-derived stem cells (ADSCs) and confirm that Rho GTPase is the downstream effector protein of SDF-1/CXCR-4 migration pathway.
METHODSADSCs were isolated, cultured, identified by flow cytometry, and induced to differentiate in vitro. RTCA xCELLigence system was used to analyze the effect of exenatide on ADSC proliferation. The effects of exenatide at different concentrations, AMD3100 (CXCR-4 antagonist), and CCG-1423 (Rho GTPase antagonist) on chemotactic migration of ADSCs were tested using Transwell assay. The expression of CXCR-4 in exenatide-treated ADSCs was measured by flow cytometry and Western blotting. Active Rho pull-down detection kit was used to detect the expression of Rho GTPase. Laser confocal microscopy was used to observe the formation of stress fibers in ADSCs with different treatments.
RESULTSExenatide treatment for 24 h had no significant effect on ADSC proliferation. Exenatide obviously promoted chemotactic migration of ADSCs in a concentration-dependent manner, and this effect was blocked by either AMD3100 or CCG-1423. Both flow cytometry and Western blotting showed that exenatide dose-dependently up-regulated CXCR-4 expression in ADSCs. Western blotting showed that the expression of Rho GTPase was related to SDF-1/CXCR-4 pathway, and laser confocal microscopy revealed that the formation of stress fibers in ADSCs was related to SDF-1/CXCR-4/ Rho GTPase pathway.
CONCLUSIONExenatide promotes chemotactic migration of ADSCs, and Rho GTPase is the downstream effector protein of SDF-1/CXCR-4 pathway.
Adipose Tissue ; cytology ; Anilides ; pharmacology ; Benzamides ; pharmacology ; Cells, Cultured ; Chemokine CXCL12 ; metabolism ; Chemotaxis ; Heterocyclic Compounds ; pharmacology ; Humans ; Peptides ; pharmacology ; Receptors, CXCR4 ; antagonists & inhibitors ; metabolism ; Signal Transduction ; Stem Cells ; cytology ; Venoms ; pharmacology ; rho GTP-Binding Proteins ; antagonists & inhibitors ; metabolism