1.Myocardial injury caused by infection of coronavirus.
Yanxia HUANG ; Mei MENG ; Dechang CHEN
Chinese Critical Care Medicine 2023;35(6):665-668
Coronaviruses are single-stranded RNA viruses that are common in animals. In the past 20 years, there have been three large-scale epidemics of coronaviruses, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease (COVID). Heart disease is an independent risk factor for severe COVID. At the same time, SARS-CoV-2 infection is often complicated with myocardial injury, which is closely related to poor prognosis. The receptors of SARS coronavirus are angiotensin-converting enzyme 2 (ACE2) and CD209L, among which ACE2 is the main receptor, and ACE2 is abundant in the heart. The receptor of MERS-coronavirus is dipeptide peptidase 4 (DPP4), which is not expressed in myocardial cells, but existed in vascular endothelial cells and blood. These receptors are important factors for the myocardial injury caused by coronavirus infection.
Animals
;
COVID-19
;
Angiotensin-Converting Enzyme 2
;
SARS-CoV-2
;
Endothelial Cells
;
Peptidyl-Dipeptidase A/genetics*
3.Repurposing FDA-approved drugs for SARS-CoV-2 through an ELISA-based screening for the inhibition of RBD/ACE2 interaction.
Wenyu FU ; Yujianan CHEN ; Kaidi WANG ; Aubryanna HETTINGHOUSE ; Wenhuo HU ; Jing-Quan WANG ; Zi-Ning LEI ; Zhe-Sheng CHEN ; Kenneth A STAPLEFORD ; Chuan-Ju LIU
Protein & Cell 2021;12(7):586-591
4.Patients taking angiotensin-converting enzyme inhibitors/angiotensin II type I receptor blockers: higher risks of severe acute respiratory syndrome coronavirus 2 infection but milder clinical manifestations?
Jie-Lin DENG ; Yun-Qiu JIANG ; Yan-Kai GUO ; Hong-Liang LI
Chinese Medical Journal 2020;133(22):2650-2652
Angiotensin II Type 1 Receptor Blockers/adverse effects*
;
Angiotensin-Converting Enzyme 2
;
Angiotensin-Converting Enzyme Inhibitors/adverse effects*
;
Betacoronavirus
;
COVID-19
;
Coronavirus Infections/etiology*
;
Humans
;
Pandemics
;
Peptidyl-Dipeptidase A/physiology*
;
Pneumonia, Viral/etiology*
;
SARS-CoV-2
6.A review on the role of angiotensin-converting enzyme 2 in children with coronavirus disease 2019.
Jing LIU ; Guo-Qian CHEN ; Li WEI ; Fu-Yong JIAO
Chinese Journal of Contemporary Pediatrics 2020;22(12):1344-1348
With the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) all over the world, there is an increasing number of children with such infection. Angiotensin-converting enzyme 2 (ACE2), one of the binding sites for SARS-CoV-2 infection in humans, can bind to viral spike proteins, allowing transmembrane serine protease (TMPRSS2) to activate S-protein to trigger infection and induce the production of various inflammatory factors such as interleukin-1, interferon-l, and tumor necrosis factor. Compared with adults, children tend to have lower expression levels of ACE2 and TMPRSS2, which are presumed to be associated with milder symptoms and fewer cases in children. The article summarizes the research advances in the role of ACE2 during SARS-CoV-2 infection, in order to help understand the pathogenic mechanism of SARS-CoV-2 and provide a reference for better development of drugs and vaccines to prevent and treat coronavirus disease 2019 in children.
Angiotensin-Converting Enzyme 2/metabolism*
;
COVID-19
;
Child
;
Humans
;
Receptors, Virus/metabolism*
;
SARS-CoV-2
;
Serine Endopeptidases/metabolism*
7.An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope.
Zezhong LIU ; Wei XU ; Zhenguo CHEN ; Wangjun FU ; Wuqiang ZHAN ; Yidan GAO ; Jie ZHOU ; Yunjiao ZHOU ; Jianbo WU ; Qian WANG ; Xiang ZHANG ; Aihua HAO ; Wei WU ; Qianqian ZHANG ; Yaming LI ; Kaiyue FAN ; Ruihong CHEN ; Qiaochu JIANG ; Christian T MAYER ; Till SCHOOFS ; Youhua XIE ; Shibo JIANG ; Yumei WEN ; Zhenghong YUAN ; Kang WANG ; Lu LU ; Lei SUN ; Qiao WANG
Protein & Cell 2022;13(9):655-675
New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design. Here, we identified a receptor-binding domain (RBD)-binding antibody, XG014, which potently neutralizes β-coronavirus lineage B (β-CoV-B), including SARS-CoV-2, its circulating variants, SARS-CoV and bat SARSr-CoV WIV1. Interestingly, antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibody-dependent SARS-CoV-2 spike (S) protein-mediated cell-cell fusion, suggesting a unique mode of recognition by XG014. Structural analyses reveal that XG014 recognizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional "down" conformation, while its family member XG005 directly competes with ACE2 binding and position the RBD "up". Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo. Our findings suggest the potential to develop XG014 as pan-β-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines against β-CoV-B and newly emerging SARS-CoV-2 variants of concern.
Angiotensin-Converting Enzyme 2
;
Antibodies, Neutralizing
;
Antibodies, Viral
;
COVID-19
;
Epitopes
;
Humans
;
SARS-CoV-2/genetics*
;
Spike Glycoprotein, Coronavirus/genetics*
8.Angiotensin-converting enzyme 2 particapates in ozone-induced lung inflammation and airway remodeling in mice.
Yue Xia WANG ; Yu ZHANG ; Liang ZHANG ; Meng Yaun LI ; Pei Yu ZHU ; Wang Quan JI ; Ruo Nan LIANG ; Lu Wei QIN ; Wei Dong WU ; Fei Fei FENG ; Yue Fei JIN
Journal of Southern Medical University 2022;42(6):860-867
OBJECTIVE:
To investigate the roles of angiotensin-converting enzyme 2 (ACE2) in ozone-induced pulmonary inflammation and airway remodeling in mice.
METHODS:
Sixteen wild-type (WT) C57BL/6J mice and 16 ACE2 knock-out (KO) mice were exposed to either filtered air or ozone (0.8 ppm) for 3 h per day for 5 consecutive days. Masson's staining and HE staining were used to observe lung pathologies. Bronchoalveolar lavage fluid (BALF) was collected and the total cell count was determined. The total proteins and cytokines in BALF were determined by BCA and ELISA method. The transcription levels of airway remodeling-related indicators in the lung tissues were detected using real-time quantitative PCR. The airway resistance of the mice was measured using a small animal ventilator with methacholine stimulation.
RESULTS:
Following ozoneexposure ACE2 KO mice had significantly higher lung pathological scores than WT mice (P < 0.05). Masson staining results showed that compared with ozone-exposed WT mice, ozone-exposed ACE2 KO mice presented with significantly larger area of collagen deposition in the bronchi [(19.62±3.16)% vs (6.49±1.34)%, P < 0.05] and alveoli [(21.63±3.78)% vs (4.44±0.99)%, P < 0.05]. The total cell count and total protein contents in the BALF were both higher in ozone-exposed ACE2 KO mice than in WT mice, but these differences were not statistically significant (P > 0.05). The concentrations of IL-6, IL-1β, TNF-α, CXCL1/KC and MCP-1 in the BALF were all higher in ozone-exposed ACE2 KO mice than in ozone-exposed WT mice, but only the difference in IL-1β was statistically significant (P < 0.05). The transcription levels of MMP-9, MMP-13, TIMP 4, COL1A1, and TGF-β in the lung tissues were all significantly higher in ozone-exposed ACE2 KO mice (P < 0.01). No significant difference was found in airway resistance between ozone-exposed ACE KO mice and WT mice after challenge with 0, 10, 25, or 100 mg/mL of methacholine.
CONCLUSION
ACE2 participates in ozone-induced lung inflammation and airway remodeling in mice.
Airway Remodeling
;
Angiotensin-Converting Enzyme 2
;
Animals
;
Methacholine Chloride
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Ozone/adverse effects*
;
Pneumonia
9.Impact of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on in-hospital mortality among patients with COVID-19: a systematic review and meta-analysis.
Xinzhe James CAI ; Julian Cheong Kiat TAY ; Swee Leng KUI ; Aung Soe TIN ; Vern Hsen TAN
Singapore medical journal 2021;62(11):563-567
INTRODUCTION:
There are concerns that angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) may worsen the outcomes of patients with COVID-19. This systematic review and meta-analysis aimed to study the in-hospital mortality among COVID-19 patients who were on ACEIs/ARBs as compared to those not on ACEIs/ARBs.
METHODS:
We searched PubMed, EMBASE, clinicaltrials.gov and Google Scholar between 1 January 2020 and 30 May 2020 to identify all studies that evaluated the use of ACEIs/ARBs and reported the in-hospital mortality outcomes of COVID-19 patients. Nine non-randomised studies were eligible for inclusion in the analysis. The primary outcome studied was the in-hospital mortality of COVID-19 patients who were on ACEIs/ARBs compared with those not on ACEIs/ARBs.
RESULTS:
Of the 8,313 patients in the nine studies, 7,622 (91.7%) were from studies with all-comers, while 691 (8.3%) were from studies involving only patients with hypertension. 577 (14.6%) in-hospital deaths were observed out of a total of 3,949 patients with an outcome in the nine studies. Overall, no significant difference was observed in the in-hospital mortality between patients on ACEIs/ARBs and those not on ACEIs/ARBs (odds ratio [OR] 1.06, 95% confidence interval [CI] 0.75-1.50; p = 0.73). Further sensitivity analysis in the hypertension group and the all-comers group showed similar results (OR 0.88, 95% CI 0.58-1.32; p = 0.53 and OR 1.85, 95% CI 1.00-3.43; p = 0.05, respectively).
CONCLUSION
We observed that ACEIs/ARBs had no significant impact on the in-hospital mortality of COVID-19 patients and can be used safely in patients with indications.
Angiotensin Receptor Antagonists/therapeutic use*
;
Angiotensin-Converting Enzyme Inhibitors/therapeutic use*
;
COVID-19
;
Hospital Mortality
;
Humans
;
Hypertension/drug therapy*
;
SARS-CoV-2
10.Single-cell analysis of angiotensin-converting enzyme II expression in human kidneys and bladders reveals a potential route of 2019 novel coronavirus infection.
Wei LIN ; Jue FAN ; Long-Fei HU ; Yan ZHANG ; Joshua D OOI ; Ting MENG ; Peng JIN ; Xiang DING ; Long-Kai PENG ; Lei SONG ; Rong TANG ; Zhou XIAO ; Xiang AO ; Xiang-Cheng XIAO ; Qiao-Ling ZHOU ; Ping XIAO ; Yong ZHONG
Chinese Medical Journal 2021;134(8):935-943
BACKGROUND:
Since 2019, a novel coronavirus named 2019 novel coronavirus (2019-nCoV) has emerged worldwide. Apart from fever and respiratory complications, acute kidney injury has been observed in a few patients with coronavirus disease 2019. Furthermore, according to recent findings, the virus has been detected in urine. Angiotensin-converting enzyme II (ACE2) has been proposed to serve as the receptor for the entry of 2019-nCoV, which is the same as that for the severe acute respiratory syndrome. This study aimed to investigate the possible cause of kidney damage and the potential route of 2019-nCoV infection in the urinary system.
METHODS:
We used both published kidney and bladder cell atlas data and new independent kidney single-cell RNA sequencing data generated in-house to evaluate ACE2 gene expression in all cell types in healthy kidneys and bladders. The Pearson correlation coefficients between ACE2 and all other genes were first generated. Then, genes with r values larger than 0.1 and P values smaller than 0.01 were deemed significant co-expression genes with ACE2.
RESULTS:
Our results showed the enriched expression of ACE2 in all subtypes of proximal tubule (PT) cells of the kidney. ACE2 expression was found in 5.12%, 5.80%, and 14.38% of the proximal convoluted tubule cells, PT cells, and proximal straight tubule cells, respectively, in three published kidney cell atlas datasets. In addition, ACE2 expression was also confirmed in 12.05%, 6.80%, and 10.20% of cells of the proximal convoluted tubule, PT, and proximal straight tubule, respectively, in our own two healthy kidney samples. For the analysis of public data from three bladder samples, ACE2 expression was low but detectable in bladder epithelial cells. Only 0.25% and 1.28% of intermediate cells and umbrella cells, respectively, had ACE2 expression.
CONCLUSION
This study has provided bioinformatics evidence of the potential route of 2019-nCoV infection in the urinary system.
Angiotensin-Converting Enzyme 2/metabolism*
;
COVID-19
;
Gene Expression
;
Humans
;
Kidney/metabolism*
;
SARS-CoV-2
;
Sequence Analysis, RNA
;
Single-Cell Analysis
;
Urinary Bladder/metabolism*