1.Application of zebrafish model organism in the research of Chinese materia medica.
Lei CHEN ; Yi LIU ; Sheng-Wang LIANG
Acta Pharmaceutica Sinica 2012;47(4):434-439
Zebrafish has become an important model organism in many fields of biomedical studies and been increasingly used in Chinese materia medica studies in recent years. This article summarized the achievements and prospect for zebrafish as a pharmacological and toxicological tool in the study and development of Chinese materia medica.
Angiogenesis Inducing Agents
;
pharmacology
;
Angiogenesis Inhibitors
;
pharmacology
;
Animals
;
Disease Models, Animal
;
Materia Medica
;
pharmacology
;
therapeutic use
;
toxicity
;
Medicine, Chinese Traditional
;
Memory Disorders
;
prevention & control
;
Neovascularization, Physiologic
;
drug effects
;
Zebrafish
2.Angiogenesis effects of nerve growth factor (NGF) on rat corneas.
Kangmoon SEO ; Jongil CHOI ; Myungjin PARK ; Changhun RHEE
Journal of Veterinary Science 2001;2(2):125-130
This study was performed to evaluate the effects of nerve growth factor (NGF) upon angiogenesis in the rat cornea, to examine its possible application as an alternative angiogenic inducer and to provide basic data for further studies. Angiogenesis was induced by cornea micropocket assay, as previously described. Eight of thirty two eyes of Sprague-Dawley rats were randomly assigned to one of four groups, namely, a non-NGF group (Group 0), a 0.5 ng of NGF group (Group 0.5), a 1.0 ng of NGF group (Group 1.0) and a 5.0 ng of NGF group (Group 5.0). Pellets made of poly-2-hydroxylethylmethacrylate and sucralfate were implanted into the corneal stroma no closer than 1 mm from the limbus. After the implantation, the number of new vessels, vessel length and circumferential neovascularization were examined daily under the surgical microscope over a period of 7 days. The area of neovascularization was determined using a mathematical formula. Although new vessels in Group 0 and Group 0.5 were first observed at day 5, those of Groups 1.0 and 5.0 were first noted on days 4 and 3, respectively. However, the growth rates of new vessels in Groups 1.0 and 5.0 were higher than those of Groups 0 and 0.5 with the passage of time. The number, length, circumferential neovascularization and areas covered by the vessels in Groups 1.0 and 5.0 were significantly more than in Group 0 and Group 0.5 (p<0.05). This study showed that NGF had a dose-dependent angiogenic effects on the rat cornea and that the minimal effective dose of NGF was 1.0 ng per cornea. Also, it showed that NGF would be useful in angiogenic studies as an alternative angiogenic inducer.
Angiogenesis Inducing Agents/*toxicity
;
Animals
;
Cornea/blood supply/*drug effects
;
Corneal Neovascularization/*chemically induced
;
Dose-Response Relationship, Drug
;
Female
;
Male
;
Nerve Growth Factor/*toxicity
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
3.Angiogenic activity of alginate-graft-PEI/pVEGF complexes in vivo.
Zhonghui HUANG ; Wei TENG ; Ying CHEN ; Qinmei WANG
Chinese Journal of Biotechnology 2013;29(12):1817-1827
To study the angiogenic activity of amphoteric brush-type copolymer complex of alginate-graft-PEI/pVEGF (Alg-g-PEI/pVEGF) in vivo, we evaluated the toxicity of Alg-g-PEI/pVEGF complexes to rMSCs and zebra fish first. Then, we used gel retardation assay to investigate the protection of complex to pDNA against DNase I, serum and heparin. For in vivo study, we evaluated the angiogenic activity of Alg-g-PEI/pVEGF complexes by using CAM and zebra fish as animal models, PEI 25K/pVEGF and saline as positive and negative controls. Our results show that Alg-g-PEI protected pVEGF from enzymolysis and displacement of heparin in some degree, and its complexes with pVEGF were less toxic to rMSCs and zebra fish. Alg-g-PEI/pVEGF complexes induced significant angiogenesis, which was dosage-dependent. In CAM, when the dosage of pVEGF was 2.4 microg/CAM, Alg-g-PEI group achieved the maximum of angiogenesis, and the area ratio of vessel to the total surface was 44.04%, which is higher than PEI 25K group (35.90%) and saline group (24.03%) (**P < 0.01). In zebra fish, the angiogenesis increased with the increase of N/P ratios of Alg-g-PEI/pVEGF complexes in our studied range; when N/P ratio was 110, the optimal angiogenesis was obtained with vessel length of 1.11 mm and area of 1.70 x 10(3) pixels, which is higher than saline group (0.69 mm and 0.94 x 10(3) pixels) (**P < 0.01) and PEI 25k group (0.82 mm and 1.11 x 10(3) pixels) (**P < 0.01). Our results demonstratethat Alg-g-PEI/pVEGF significantly induces angiogenesis in CAM and zebra fish, and has a great potential in therapeutic angiogenesis.
Alginates
;
chemistry
;
Angiogenesis Inducing Agents
;
pharmacology
;
Animals
;
Chick Embryo
;
Drug Carriers
;
chemistry
;
Genetic Vectors
;
genetics
;
Glucuronic Acid
;
chemistry
;
Hexuronic Acids
;
chemistry
;
Mesenchymal Stromal Cells
;
cytology
;
drug effects
;
Polyethyleneimine
;
chemistry
;
Polymers
;
pharmacology
;
toxicity
;
Vascular Endothelial Growth Factor A
;
chemistry
;
Zebrafish