1.The selection criteria of temporary or permanent luting agents in implant-supported prostheses: in vitro study.
Angel ALVAREZ-ARENAL ; Ignacio GONZALEZ-GONZALEZ ; Hector DELLANOS-LANCHARES ; Aritza BRIZUELA-VELASCO ; Joseba ELLACURIA-ECHEBARRIA
The Journal of Advanced Prosthodontics 2016;8(2):144-149
PURPOSE: The use of temporary or permanent cements in fixed implant-supported prostheses is under discussion. The objective was to compare the retentiveness of one temporary and two permanent cements after cyclic compressive loading. MATERIALS AND METHODS: The working model was five solid abutments screwed to five implant analogs. Thirty Cr-Ni alloy copings were randomized and cemented to the abutments with one temporary (resin urethane-based) or two permanent (resin-modified glass ionomer, resin-composite) cements. The retention strength was measured twice: once after the copings were cemented and again after a compressive cyclic loading of 100 N at 0.72 Hz (100,000 cycles). RESULTS: Before loading, the retention strength of resin composite was 75% higher than the resin-modified glass ionomer and 2.5 times higher than resin urethane-based cement. After loading, the retentiveness of the three cements decreased in a non-uniform manner. The greatest percentage of retention loss was shown by the temporary cement and the lowest by the permanent resin composite. However, the two permanent cements consistently show high retention values. CONCLUSION: The higher the initial retention of each cement, the lower the percentage of retention loss after compressive cyclic loading. After loading, the resin urethane-based cement was the most favourable cement for retrieving the crowns and resin composite was the most favourable cement to keep them in place.
Alloys
;
Crowns
;
Dental Cements*
;
Glass
;
Patient Selection*
;
Prostheses and Implants*
2.Long-Term Evolution of the Electrical Stimulation Levels for Cochlear Implant Patients.
Jose Luis VARGAS ; Manuel SAINZ ; Cristina ROLDAN ; Isaac ALVAREZ ; Angel DE LA TORRE
Clinical and Experimental Otorhinolaryngology 2012;5(4):194-200
OBJECTIVES: The stimulation levels programmed in cochlear implant systems are affected by an evolution since the first switch-on of the processor. This study was designed to evaluate the changes in stimulation levels over time and the relationship between post-implantation physiological changes and with the hearing experience provided by the continuous use of the cochlear implant. METHODS: Sixty-two patients, ranging in age from 4 to 68 years at the moment of implantation participated in this study. All subjects were implanted with the 12 channels COMBI 40+ cochlear implant at San Cecilio University Hospital, Granada, Spain. Hearing loss etiology and progression characteristics varied across subjects. RESULTS: The analyzed programming maps show that the stimulation levels suffer a fast evolution during the first weeks after the first switch-on of the processor. Then, the evolution becomes slower and the programming parameters tend to be stable at about 6 months after the first switch-on. The evolution of the stimulation levels implies an increment of the electrical dynamic range, which is increased from 15.4 to 20.7 dB and improves the intensity resolution. A significant increment of the sensitivity to acoustic stimuli is also observed. For some patients, we have also observed transitory changes in the electrode impedances associated to secretory otitis media, which cause important changes in the programming maps. CONCLUSION: We have studied the long-term evolution of the stimulation levels in cochlear implant patients. Our results show the importance of systematic measurements of the electrode impedances before the revision of the programming map. This report also highlights that the evolution of the programming maps is an important factor to be considered in order to determine an adequate calendar fitting of the cochlear implant processor.
Acoustics
;
Cochlear Implants
;
Electric Impedance
;
Electric Stimulation
;
Electrodes
;
Hearing
;
Hearing Loss
;
Humans
;
Otitis Media with Effusion
;
Prosthesis Fitting
;
Spain
3.Extra-Abdominal Desmoid Tumor Located in the Axilla.
Francisco Javier PACHECO COMPANA ; Angel ALVAREZ JORGE ; Carmen DELGADO SOTORRIO
Archives of Plastic Surgery 2014;41(6):780-782
No abstract available.
Axilla*
;
Fibromatosis, Aggressive*
4.Noncoding RNAs in cancer and cancer stem cells.
Tianzhi HUANG ; Angel ALVAREZ ; Bo HU ; Shi-Yuan CHENG
Chinese Journal of Cancer 2013;32(11):582-593
In recent years, it has become increasingly apparent that noncoding RNAs (ncRNA) are of crucial importance for human cancer. The functional relevance of ncRNAs is particularly evident for microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). miRNAs are endogenously expressed small RNA sequences that act as post-transcriptional regulators of gene expression and have been extensively studied for their roles in cancers, whereas lncRNAs are emerging as important players in the cancer paradigm in recent years. These noncoding genes are often aberrantly expressed in a variety of human cancers. However, the biological functions of most ncRNAs remain largely unknown. Recently, evidence has begun to accumulate describing how ncRNAs are dysregulated in cancer and cancer stem cells, a subset of cancer cells harboring self-renewal and differentiation capacities. These studies provide insight into the functional roles that ncRNAs play in tumor initiation, progression, and resistance to therapies, and they suggest ncRNAs as attractive therapeutic targets and potentially useful diagnostic tools.
Gene Expression Regulation, Neoplastic
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
Neoplasms
;
genetics
;
metabolism
;
pathology
;
therapy
;
Neoplastic Stem Cells
;
metabolism
;
RNA, Long Noncoding
;
genetics
;
metabolism
;
RNA, Untranslated
;
genetics
;
metabolism
5.Effect of implant- and occlusal load location on stress distribution in Locator attachments of mandibular overdenture. A finite element study.
Angel ALVAREZ-ARENAL ; Ignacio GONZALEZ-GONZALEZ ; Hector DELLANOS-LANCHARES ; Elena MARTIN-FERNANDEZ ; Aritza BRIZUELA-VELASCO ; Joseba ELLACURIA-ECHEBARRIA
The Journal of Advanced Prosthodontics 2017;9(5):371-380
PURPOSE: The aim of this study is to evaluate and compare the stress distribution in Locator attachments in mandibular two-implant overdentures according to implant locations and different loading conditions. MATERIALS AND METHODS: Four three-dimensional finite element models were created, simulating two osseointegrated implants in the mandible to support two Locator attachments and an overdenture. The models simulated an overdenture with implants located in the position of the level of lateral incisors, canines, second premolars, and crossed implant. A 150 N vertical unilateral and bilateral load was applied at different locations and 40 N was also applied when combined with anterior load at the midline. Data for von Mises stresses in the abutment (matrix) of the attachment and the plastic insert (patrix) of the attachment were produced numerically, color-coded, and compared between the models for attachments and loading conditions. RESULTS: Regardless of the load, the greatest stress values were recorded in the overdenture attachments with implants at lateral incisor locations. In all models and load conditions, the attachment abutment (matrix) withstood a much greater stress than the insert plastic (patrix). Regardless of the model, when a unilateral load was applied, the load side Locator attachments recorded a much higher stress compared to the contralateral side. However, with load bilateral posterior alone or combined at midline load, the stress distribution was more symmetrical. The stress is distributed primarily in the occlusal and lateral surface of the insert plastic patrix and threadless area of the abutment (matrix). CONCLUSION: The overdenture model with lateral incisor level implants is the worst design in terms of biomechanical environment for the attachment components. The bilateral load in general favors a more uniform stress distribution in both attachments compared to a much greater stress registered with unilateral load in the load side attachments. Regardless of the implant positions and the occlusal load application site, the stress transferred to the insert plastic is much lower than that registered in the abutment.
Bicuspid
;
Clothing
;
Denture, Overlay*
;
Finite Element Analysis
;
Incisor
;
Mandible
;
Plastics