1.General Anesthesia versus Conscious Sedation in Mechanical Thrombectomy
Katharina FEIL ; Moriz HERZBERG ; Franziska DORN ; Steffen TIEDT ; Clemens KÜPPER ; Dennis C. THUNSTEDT ; Ludwig C. HINSKE ; Konstanze MÜHLBAUER ; Sebastian GOSS ; Thomas LIEBIG ; Marianne DIETERICH ; Andreas BAYER ; Lars KELLERT ;
Journal of Stroke 2021;23(1):103-112
Background:
and Purpose Anesthesia regimen in patients undergoing mechanical thrombectomy (MT) is still an unresolved issue.
Methods:
We compared the effect of anesthesia regimen using data from the German Stroke Registry-Endovascular Treatment (GSR-ET) between June 2015 and December 2019. Degree of disability was rated by the modified Rankin Scale (mRS), and good outcome was defined as mRS 0–2. Successful reperfusion was assumed when the modified thrombolysis in cerebral infarction scale was 2b–3.
Results:
Out of 6,635 patients, 67.1% (n=4,453) patients underwent general anesthesia (GA), 24.9% (n=1,650) conscious sedation (CS), and 3.3% (n=219) conversion from CS to GA. Rate of successful reperfusion was similar across all three groups (83.0% vs. 84.2% vs. 82.6%, P=0.149). Compared to the CA-group, the GA-group had a delay from admission to groin (71.0 minutes vs. 61.0 minutes, P<0.001), but a comparable interval from groin to flow restoration (41.0 minutes vs. 39.0 minutes). The CS-group had the lowest rate of periprocedural complications (15.0% vs. 21.0% vs. 28.3%, P<0.001). The CS-group was more likely to have a good outcome at follow-up (42.1% vs. 34.2% vs. 33.5%, P<0.001) and a lower mortality rate (23.4% vs. 34.2% vs. 26.0%, P<0.001). In multivariable analysis, GA was associated with reduced achievement of good functional outcome (odds ratio [OR], 0.82; 95% confidence interval [CI], 0.71 to 0.94; P=0.004) and increased mortality (OR, 1.42; 95% CI, 1.23 to 1.64; P<0.001). Subgroup analysis for anterior circulation strokes (n=5,808) showed comparable results.
Conclusions
We provide further evidence that CS during MT has advantages over GA in terms of complications, time intervals, and functional outcome.
2.Changes of hemodynamic and cerebral oxygenation after exercise in normobaric and hypobaric hypoxia: associations with acute mountain sickness
Tobias KAMMERER ; Valentina FAIHS ; Nikolai HULDE ; Andreas BAYER ; Max HÜBNER ; Florian BRETTNER ; Walter KARLEN ; Julia Maria KRÖPFL ; Markus REHM ; Christina SPENGLER ; Simon Thomas SCHÄFER
Annals of Occupational and Environmental Medicine 2018;30(1):66-
OBJECTIVE: Normobaric (NH) and hypobaric hypoxia (HH) are associated with acute mountain sickness (AMS) and cognitive dysfunction. Only few variables, like heart-rate-variability, are correlated with AMS. However, prediction of AMS remains difficult. We therefore designed an expedition-study with healthy volunteers in NH/HH to investigate additional non-invasive hemodynamic variables associated with AMS. METHODS: Eleven healthy subjects were examined in NH (FiO2 13.1%; equivalent of 3.883 m a.s.l; duration 4 h) and HH (3.883 m a.s.l.; duration 24 h) before and after an exercise of 120 min. Changes in parameters of electrical cardiometry (cardiac index (CI), left-ventricular ejection time (LVET), stroke volume (SV), index of contractility (ICON)), near-infrared spectroscopy (cerebral oxygenation, rScO2), Lake-Louise-Score (LLS) and cognitive function tests were assessed. One-Way-ANOVA, Wilcoxon matched-pairs test, Spearman’s-correlation-analysis and Student’s t-test were performed. RESULTS: HH increased heart rate (HR), mean arterial pressure (MAP) and CI and decreased LVET, SV and ICON, whereas NH increased HR and decreased LVET. In both NH and HH cerebral oxygenation decreased and LLS increased significantly. After 24 h in HH, 6 of 11 subjects (54.6%) developed AMS. LLS remained increased until 24 h in HH, whereas cognitive function remained unaltered. In HH, HR and LLS were inversely correlated (r = − 0.692; p < 0.05). More importantly, the rScO2-decrease after exercise in NH significantly correlated with LLS after 24 h in HH (r = − 0.971; p < 0.01) and rScO2 correlated significantly with HR (r = 0.802; p < 0.01), CI (r = 0.682; p < 0.05) and SV (r = 0.709; p < 0.05) after exercise in HH. CONCLUSIONS: Both acute NH and HH altered hemodynamic and cerebral oxygenation and induced AMS. Subjects, who adapted their CI had higher rScO2 and lower LLS. Furthermore, rScO2 after exercise under normobaric conditions was associated with AMS at high altitudes.
Altitude
;
Altitude Sickness
;
Anoxia
;
Arterial Pressure
;
Cognition
;
Healthy Volunteers
;
Heart Rate
;
Hemodynamics
;
Oxygen
;
Spectroscopy, Near-Infrared
;
Stroke Volume