1.Tuina Treatment of Infantile Torticollis by Syndrome Differentiation and Pattern Classification
Journal of Acupuncture and Tuina Science 2004;2(6):38-40
After classified into ovary mass pattern, cord-like mass pattern and non-mass pattern, 500 cases of the patients sick with infantile torticollis were treated by Tuina manipulations of pressing and rubbing method, pressing and kneading method, plucking and twisting method, extending and rotating method and the pulling method, with the corresponding manual techniques upon different pattern. The treatment ranged from 20 days to 120 days and the total effective rate was 99.4%.
2.Evaluation of Material Permeability of Type I Collagen Hydrogel.
Xiaojie DUAN ; Shan LIU ; Yue MA ; Xueliang SUN ; Jinheng WANG ; Anliang SHAO ; Liming XU
Chinese Journal of Medical Instrumentation 2018;42(2):140-143
OBJECTIVES:
To establish an experimental method for evaluating material permeability of type I collagen hydrogels.
METHODS:
Using BSA-FITC as an indicator, by combining BSA-FITC with PBS they were used as permeability media, and using transwell load hydrogen sample to detect BSA-FITC transparent rate.
RESULTS:
In the concentration range of 100 μg·mL~0.781 μg·mL, the standard curve ≥ 0.99, Lower Limit of Quantity (LLOQ) is 3.125 μg·mL, RSD <5%, detection recovery rate is in the range of 80%~120%.
CONCLUSIONS
In this study, we established an experimental method for evaluating material permeability of hydrogel. The BSA-FITC transparent rate of type I collagen hydrogel was 100% at 28 h.
Collagen Type I
;
chemistry
;
Hydrogels
;
chemistry
;
Materials Testing
;
Permeability
3.Role of PPAR-γ-regulated autophagy in genistein-induced inhibition of hepatic stellate cell activation.
Xipeng LIU ; Meifang ZHANG ; Haifeng ZHANG ; Anda ZHAO ; Juan SUN ; Wen TANG
Journal of Southern Medical University 2019;39(5):561-565
OBJECTIVE:
To investigate the inhibitory effect of genistein on activation of hepatic stellate cells (HSCs) and the role of the autophagy pathway regulated by PPAR-γ in mediating this effect.
METHODS:
Cultured HSC-T6 cells were exposed to different concentrations of genistein for 48 h, and HSC activation was verified by detecting the expressions of -SMA and 1(I) collagen; autophagy activation in the cells was determined by detecting the expressions of LC3-II and p62 using Western blotting. The autophagy inhibitor 3-MA was used to confirm the role of autophagy in genistein-induced inhibition of HSC activation. A PPAR-γ inhibitor was used to explore the role of PPAR-γ in activating autophagy in the HSCs.
RESULTS:
Genistein at concentrations of 5 and 50 μmol/L significantly inhibited the expressions of -SMA and 1(I) collagen ( < 0.05), markedly upregulated the expressions of PPAR-γ and the autophagy-related protein LC3-II ( < 0.05) and significantly down-regulated the expression of the ubiqutin-binding protein p62 ( < 0.05) in HSC-T6 cells. The cells pretreated with 3-MA prior to genistein treatment showed significantly increased protein expressions of -SMA and 1(I) collagen compared with the cells treated with genistein only ( < 0.05). Treatment with the PPAR-γ inhibitor obviously lowered the expression of LC3-II and enhanced the expression p62 in genistein-treated HSC-T6 cells, suggesting the activation of the autophagy pathway.
CONCLUSIONS
PPAR-γ- regulated autophagy plays an important role in mediating genistein-induced inhibition of HSC activation .
Anticarcinogenic Agents
;
pharmacology
;
Autophagy
;
Collagen Type I
;
Genistein
;
pharmacology
;
Hepatic Stellate Cells
;
Humans
;
PPAR gamma
;
physiology