1.TProtective effect of chlormethiazole, a sedative, against acetaminophen-induced liver injury in mice.
Han Chu LEE ; Sung Ae JUNG ; Hye Kyung JUNG ; Sun Young YI ; Doe Young KIM ; Il Hwan MOON ; Sung Su PARK
The Korean Journal of Internal Medicine 1999;14(2):27-33
OBJECTIVES: The hepatotoxicity of acetaminophen is not a result of the parent compound but is mediated by its reactive metabolite N-acetyl-p-benzoquinone imine. Cytochrome P4502E1 (CYP2E1) is the principal enzyme of this biotransformation, which accounts for approximately 52% of the bioactivation in human microsomes. Recently, chlormethiazole a sedative drug, is reported to be an efficient inhibitor of CYP2E1 activity in human beings. In this study we wished to evaluate whether chlormethiazole, an inhibitor of CYP2E1, could prevent acetaminophen-induced liver injury in mice. METHODS: Acetaminophen, at doses ranging from 200 to 600 mg/kg, was injected into the peritoneum of female C57BL/6 inbred mice fasted for four hours. Chlormethiazole (60 mg/kg) or 5% dextrose water was given 30 min before or 2 h after acetaminophen. Serum aminotransferase activities, histologic index score, survival rate and hepatic malondialdehyde levels were compared. RESULTS: Pretreatment with chlormethiazole 30 min before 400 mg/kg of acetaminophen completely inhibited acetaminophen-induced liver injury (median 118.5 U/L, range 75 to 142 vs. 14,070 U/L, range 5980 to 27,680 for AST; 49 U/L, range 41 to 64 vs. 15,330 U/L, range 13,920 to 15,940 for ALT). In mice receiving chlormethiazole 2 h after acetaminophen, the mean AST and ALT levels were also less elevated, reaching only 20% of the value of acetaminophen-only group. These protective effects were confirmed histologically. Whereas more than 50% of mice died at 500 mg/kg of acetaminophen, all the mice pretreated with chlormethiazole survived at the same dose. CONCLUSION: Chlormethiazole effectively reduces acetaminophen-induced liver injury in mice. Further studies are needed to assess its role in humans.
Acetaminophen/toxicity*
;
Acetaminophen/metabolism
;
Acetaminophen/antagonists & inhibitors
;
Analgesics, Non-Narcotic/toxicity*
;
Analgesics, Non-Narcotic/metabolism
;
Analgesics, Non-Narcotic/antagonists & inhibitors
;
Animal
;
Chlormethiazole/pharmacology*
;
Cytochrome P-450 CYP2E1/antagonists & inhibitors
;
Enzyme Inhibitors/pharmacology
;
Female
;
Human
;
Liver/metabolism
;
Liver/injuries*
;
Liver/drug effects*
;
Mice
;
Mice, Inbred C57BL
;
Sedatives, Nonbarbiturate/pharmacology*
;
Support, Non-U.S. Gov't
2.In vitro O-demethylation of rotundine by recombinant human CYP isoenzymes.
Chun-zheng LI ; Qing-hui LIN ; Xiao-mei ZHUANG ; Jian-wei XIE ; Hua LI
Acta Pharmaceutica Sinica 2010;45(3):307-313
Rotundine (1 micromol L(-1)) was incubated with a panel of rCYP enzymes (1A2, 2C9, 2C19, 2D6 and 3A4) in vitro. The remained parent drug in incubates was quantitatively analyzed by an Agilent LC-MS. CYP2C19, 3A4 and 2D6 were identified to be the isoenzymes involved in the metabolism of rotundine. The individual contributions of CYP2C19, 3A4 and 2D6 to the rotundine metabolism were assessed using the method of total normalized rate to be 31.46%, 60.37% and 8.17%, respectively. The metabolites of rotundine in incubates were screened with ESI-MS at selected ion mode, and were further identified using MS2 spectra and precise molecular mass obtained from an Agilent LC/Q-TOF-MSMS, as well as MS(n) spectra of LC-iTrap-MS(n). The predominant metabolic pathway of rotundine in rCYP incubates was O-demethylation. A total 5 metabolites were identified including 4 isomerides of mono demethylated rotundine and one di-demethylated metabolite. The results also showed that CYP2C19, 2D6 and 3A4 mediated O-demethylation of methoxyl groups at different positions of rotundine. Furthermore, the ESI-MS cleavage patterns of rotundine and its metabolites were explored by using LC/Q-TOF-MSMS and LC/iTrap-MS(n) techniques.
Analgesics, Non-Narcotic
;
metabolism
;
Aryl Hydrocarbon Hydroxylases
;
metabolism
;
Berberine Alkaloids
;
metabolism
;
Chromatography, Liquid
;
Cytochrome P-450 CYP1A2
;
metabolism
;
Cytochrome P-450 CYP2C19
;
Cytochrome P-450 CYP2C9
;
Cytochrome P-450 CYP2D6
;
metabolism
;
Cytochrome P-450 CYP3A
;
metabolism
;
Cytochrome P-450 Enzyme System
;
metabolism
;
Dopamine Antagonists
;
metabolism
;
Humans
;
Isoenzymes
;
metabolism
;
Methylation
;
Recombinant Proteins
;
metabolism
;
Spectrometry, Mass, Electrospray Ionization