1.Plasma metabolite based clustering of breast cancer survivors and identification of dietary and health related characteristics: an application of unsupervised machine learning
Ga-Eun YIE ; Woojin KYEONG ; Sihan SONG ; Zisun KIM ; Hyun Jo YOUN ; Jihyoung CHO ; Jun Won MIN ; Yoo Seok KIM ; Jung Eun LEE
Nutrition Research and Practice 2025;19(2):273-291
BACKGROUND/OBJECTIVES:
This study aimed to use plasma metabolites to identify clusters of breast cancer survivors and to compare their dietary characteristics and health-related factors across the clusters using unsupervised machine learning.
SUBJECTS/METHODS:
A total of 419 breast cancer survivors were included in this crosssectional study. We considered 30 plasma metabolites, quantified by high-throughput nuclear magnetic resonance metabolomics. Clusters were obtained based on metabolites using 4 different unsupervised clustering methods: k-means (KM), partitioning around medoids (PAM), self-organizing maps (SOM), and hierarchical agglomerative clustering (HAC). The t-test, χ2 test, and Fisher’s exact test were used to compare sociodemographic, lifestyle, clinical, and dietary characteristics across the clusters. P-values were adjusted through a false discovery rate (FDR).
RESULTS:
Two clusters were identified using the 4 methods. Participants in cluster 2 had lower concentrations of apolipoprotein A1 and large high-density lipoprotein (HDL) particles and smaller HDL particle sizes, but higher concentrations of chylomicrons and extremely large very-low-density-lipoprotein (VLDL) particles and glycoprotein acetyls, a higher ratio of monounsaturated fatty acids to total fatty acids, and larger VLDL particle sizes compared with cluster 1. Body mass index was significantly higher in cluster 2 compared with cluster 1 (FDR adjusted-PKM < 0.001; PPAM = 0.001; PSOM < 0.001; and PHAC = 0.043).
CONCLUSION
The breast cancer survivors clustered on the basis of plasma metabolites had distinct characteristics. Further prospective studies are needed to investigate the associations between metabolites, obesity, dietary factors, and breast cancer prognosis.
2.Plasma metabolite based clustering of breast cancer survivors and identification of dietary and health related characteristics: an application of unsupervised machine learning
Ga-Eun YIE ; Woojin KYEONG ; Sihan SONG ; Zisun KIM ; Hyun Jo YOUN ; Jihyoung CHO ; Jun Won MIN ; Yoo Seok KIM ; Jung Eun LEE
Nutrition Research and Practice 2025;19(2):273-291
BACKGROUND/OBJECTIVES:
This study aimed to use plasma metabolites to identify clusters of breast cancer survivors and to compare their dietary characteristics and health-related factors across the clusters using unsupervised machine learning.
SUBJECTS/METHODS:
A total of 419 breast cancer survivors were included in this crosssectional study. We considered 30 plasma metabolites, quantified by high-throughput nuclear magnetic resonance metabolomics. Clusters were obtained based on metabolites using 4 different unsupervised clustering methods: k-means (KM), partitioning around medoids (PAM), self-organizing maps (SOM), and hierarchical agglomerative clustering (HAC). The t-test, χ2 test, and Fisher’s exact test were used to compare sociodemographic, lifestyle, clinical, and dietary characteristics across the clusters. P-values were adjusted through a false discovery rate (FDR).
RESULTS:
Two clusters were identified using the 4 methods. Participants in cluster 2 had lower concentrations of apolipoprotein A1 and large high-density lipoprotein (HDL) particles and smaller HDL particle sizes, but higher concentrations of chylomicrons and extremely large very-low-density-lipoprotein (VLDL) particles and glycoprotein acetyls, a higher ratio of monounsaturated fatty acids to total fatty acids, and larger VLDL particle sizes compared with cluster 1. Body mass index was significantly higher in cluster 2 compared with cluster 1 (FDR adjusted-PKM < 0.001; PPAM = 0.001; PSOM < 0.001; and PHAC = 0.043).
CONCLUSION
The breast cancer survivors clustered on the basis of plasma metabolites had distinct characteristics. Further prospective studies are needed to investigate the associations between metabolites, obesity, dietary factors, and breast cancer prognosis.
3.Plasma metabolite based clustering of breast cancer survivors and identification of dietary and health related characteristics: an application of unsupervised machine learning
Ga-Eun YIE ; Woojin KYEONG ; Sihan SONG ; Zisun KIM ; Hyun Jo YOUN ; Jihyoung CHO ; Jun Won MIN ; Yoo Seok KIM ; Jung Eun LEE
Nutrition Research and Practice 2025;19(2):273-291
BACKGROUND/OBJECTIVES:
This study aimed to use plasma metabolites to identify clusters of breast cancer survivors and to compare their dietary characteristics and health-related factors across the clusters using unsupervised machine learning.
SUBJECTS/METHODS:
A total of 419 breast cancer survivors were included in this crosssectional study. We considered 30 plasma metabolites, quantified by high-throughput nuclear magnetic resonance metabolomics. Clusters were obtained based on metabolites using 4 different unsupervised clustering methods: k-means (KM), partitioning around medoids (PAM), self-organizing maps (SOM), and hierarchical agglomerative clustering (HAC). The t-test, χ2 test, and Fisher’s exact test were used to compare sociodemographic, lifestyle, clinical, and dietary characteristics across the clusters. P-values were adjusted through a false discovery rate (FDR).
RESULTS:
Two clusters were identified using the 4 methods. Participants in cluster 2 had lower concentrations of apolipoprotein A1 and large high-density lipoprotein (HDL) particles and smaller HDL particle sizes, but higher concentrations of chylomicrons and extremely large very-low-density-lipoprotein (VLDL) particles and glycoprotein acetyls, a higher ratio of monounsaturated fatty acids to total fatty acids, and larger VLDL particle sizes compared with cluster 1. Body mass index was significantly higher in cluster 2 compared with cluster 1 (FDR adjusted-PKM < 0.001; PPAM = 0.001; PSOM < 0.001; and PHAC = 0.043).
CONCLUSION
The breast cancer survivors clustered on the basis of plasma metabolites had distinct characteristics. Further prospective studies are needed to investigate the associations between metabolites, obesity, dietary factors, and breast cancer prognosis.
4.Plasma metabolite based clustering of breast cancer survivors and identification of dietary and health related characteristics: an application of unsupervised machine learning
Ga-Eun YIE ; Woojin KYEONG ; Sihan SONG ; Zisun KIM ; Hyun Jo YOUN ; Jihyoung CHO ; Jun Won MIN ; Yoo Seok KIM ; Jung Eun LEE
Nutrition Research and Practice 2025;19(2):273-291
BACKGROUND/OBJECTIVES:
This study aimed to use plasma metabolites to identify clusters of breast cancer survivors and to compare their dietary characteristics and health-related factors across the clusters using unsupervised machine learning.
SUBJECTS/METHODS:
A total of 419 breast cancer survivors were included in this crosssectional study. We considered 30 plasma metabolites, quantified by high-throughput nuclear magnetic resonance metabolomics. Clusters were obtained based on metabolites using 4 different unsupervised clustering methods: k-means (KM), partitioning around medoids (PAM), self-organizing maps (SOM), and hierarchical agglomerative clustering (HAC). The t-test, χ2 test, and Fisher’s exact test were used to compare sociodemographic, lifestyle, clinical, and dietary characteristics across the clusters. P-values were adjusted through a false discovery rate (FDR).
RESULTS:
Two clusters were identified using the 4 methods. Participants in cluster 2 had lower concentrations of apolipoprotein A1 and large high-density lipoprotein (HDL) particles and smaller HDL particle sizes, but higher concentrations of chylomicrons and extremely large very-low-density-lipoprotein (VLDL) particles and glycoprotein acetyls, a higher ratio of monounsaturated fatty acids to total fatty acids, and larger VLDL particle sizes compared with cluster 1. Body mass index was significantly higher in cluster 2 compared with cluster 1 (FDR adjusted-PKM < 0.001; PPAM = 0.001; PSOM < 0.001; and PHAC = 0.043).
CONCLUSION
The breast cancer survivors clustered on the basis of plasma metabolites had distinct characteristics. Further prospective studies are needed to investigate the associations between metabolites, obesity, dietary factors, and breast cancer prognosis.
5.Plasma metabolite based clustering of breast cancer survivors and identification of dietary and health related characteristics: an application of unsupervised machine learning
Ga-Eun YIE ; Woojin KYEONG ; Sihan SONG ; Zisun KIM ; Hyun Jo YOUN ; Jihyoung CHO ; Jun Won MIN ; Yoo Seok KIM ; Jung Eun LEE
Nutrition Research and Practice 2025;19(2):273-291
BACKGROUND/OBJECTIVES:
This study aimed to use plasma metabolites to identify clusters of breast cancer survivors and to compare their dietary characteristics and health-related factors across the clusters using unsupervised machine learning.
SUBJECTS/METHODS:
A total of 419 breast cancer survivors were included in this crosssectional study. We considered 30 plasma metabolites, quantified by high-throughput nuclear magnetic resonance metabolomics. Clusters were obtained based on metabolites using 4 different unsupervised clustering methods: k-means (KM), partitioning around medoids (PAM), self-organizing maps (SOM), and hierarchical agglomerative clustering (HAC). The t-test, χ2 test, and Fisher’s exact test were used to compare sociodemographic, lifestyle, clinical, and dietary characteristics across the clusters. P-values were adjusted through a false discovery rate (FDR).
RESULTS:
Two clusters were identified using the 4 methods. Participants in cluster 2 had lower concentrations of apolipoprotein A1 and large high-density lipoprotein (HDL) particles and smaller HDL particle sizes, but higher concentrations of chylomicrons and extremely large very-low-density-lipoprotein (VLDL) particles and glycoprotein acetyls, a higher ratio of monounsaturated fatty acids to total fatty acids, and larger VLDL particle sizes compared with cluster 1. Body mass index was significantly higher in cluster 2 compared with cluster 1 (FDR adjusted-PKM < 0.001; PPAM = 0.001; PSOM < 0.001; and PHAC = 0.043).
CONCLUSION
The breast cancer survivors clustered on the basis of plasma metabolites had distinct characteristics. Further prospective studies are needed to investigate the associations between metabolites, obesity, dietary factors, and breast cancer prognosis.
7.Cyanoacrylate Glue Ablation for Symptomatic Reflux in a Duplicated Femoral Vein:A Case Report
Kilsoo YIE ; Eun-Hee JEONG ; A-Rom SHIN ; Bo-Mi KIM ; Eun-Jung HWANG
Vascular Specialist International 2024;40(4):43-
The literature on minimally invasive techniques specifically targeting reflux in symptomatic femoral vein duplication (FVD) is limited. We present a rare case of symptomatic reflux in FVD, successfully treated with cyanoacrylate glue ablation under ultrasonographic guidance. Our findings suggest that the unique anatomy of FVD can be effectively addressed through percutaneous endovenous glue ablation, providing a technically safe and feasible alternative without open surgery.Our patient experienced symptom resolution, no post-procedural complications, and maintained stable occlusion at a 1-year follow-up. This outcome highlights the potential of endovenous glue ablation as an innovative approach in managing deep vein reflux, particularly in cases involving FVD. To broaden its application in clinical practice, further research is crucial to establish appropriate patient selection criteria and refine treatment protocols.
8.Cyanoacrylate Glue Ablation for Symptomatic Reflux in a Duplicated Femoral Vein:A Case Report
Kilsoo YIE ; Eun-Hee JEONG ; A-Rom SHIN ; Bo-Mi KIM ; Eun-Jung HWANG
Vascular Specialist International 2024;40(4):43-
The literature on minimally invasive techniques specifically targeting reflux in symptomatic femoral vein duplication (FVD) is limited. We present a rare case of symptomatic reflux in FVD, successfully treated with cyanoacrylate glue ablation under ultrasonographic guidance. Our findings suggest that the unique anatomy of FVD can be effectively addressed through percutaneous endovenous glue ablation, providing a technically safe and feasible alternative without open surgery.Our patient experienced symptom resolution, no post-procedural complications, and maintained stable occlusion at a 1-year follow-up. This outcome highlights the potential of endovenous glue ablation as an innovative approach in managing deep vein reflux, particularly in cases involving FVD. To broaden its application in clinical practice, further research is crucial to establish appropriate patient selection criteria and refine treatment protocols.
9.Cyanoacrylate Glue Ablation for Symptomatic Reflux in a Duplicated Femoral Vein:A Case Report
Kilsoo YIE ; Eun-Hee JEONG ; A-Rom SHIN ; Bo-Mi KIM ; Eun-Jung HWANG
Vascular Specialist International 2024;40(4):43-
The literature on minimally invasive techniques specifically targeting reflux in symptomatic femoral vein duplication (FVD) is limited. We present a rare case of symptomatic reflux in FVD, successfully treated with cyanoacrylate glue ablation under ultrasonographic guidance. Our findings suggest that the unique anatomy of FVD can be effectively addressed through percutaneous endovenous glue ablation, providing a technically safe and feasible alternative without open surgery.Our patient experienced symptom resolution, no post-procedural complications, and maintained stable occlusion at a 1-year follow-up. This outcome highlights the potential of endovenous glue ablation as an innovative approach in managing deep vein reflux, particularly in cases involving FVD. To broaden its application in clinical practice, further research is crucial to establish appropriate patient selection criteria and refine treatment protocols.
10.Cyanoacrylate Glue Ablation for Symptomatic Reflux in a Duplicated Femoral Vein:A Case Report
Kilsoo YIE ; Eun-Hee JEONG ; A-Rom SHIN ; Bo-Mi KIM ; Eun-Jung HWANG
Vascular Specialist International 2024;40(4):43-
The literature on minimally invasive techniques specifically targeting reflux in symptomatic femoral vein duplication (FVD) is limited. We present a rare case of symptomatic reflux in FVD, successfully treated with cyanoacrylate glue ablation under ultrasonographic guidance. Our findings suggest that the unique anatomy of FVD can be effectively addressed through percutaneous endovenous glue ablation, providing a technically safe and feasible alternative without open surgery.Our patient experienced symptom resolution, no post-procedural complications, and maintained stable occlusion at a 1-year follow-up. This outcome highlights the potential of endovenous glue ablation as an innovative approach in managing deep vein reflux, particularly in cases involving FVD. To broaden its application in clinical practice, further research is crucial to establish appropriate patient selection criteria and refine treatment protocols.

Result Analysis
Print
Save
E-mail