1.Strategies for Building an Artificial Intelligence-Empowered Trusted Federated Evidence-Based Analysis Platform for Spleen-Stomach Diseases in Traditional Chinese Medicine
Bin WANG ; Huiying ZHUANG ; Zhitao MAN ; Lifeng REN ; Chang HE ; Chen WU ; Xulei HU ; Xiaoxiao WEN ; Chenggong XIE ; Xudong TANG
Journal of Traditional Chinese Medicine 2026;67(1):95-102
This paper outlines the development of artificial intelligence (AI) and its applications in traditional Chinese medicine (TCM) research, and elucidates the roles and advantages of large language models, knowledge graphs, and natural language processing in advancing syndrome identification, prescription generation, and mechanism exploration. Using spleen-stomach diseases as an example, it demonstrates the empowering effects of AI in classical literature mining, precise clinical syndrome differentiation, efficacy and safety prediction, and intelligent education, highlighting an upgraded research paradigm that evolves from data-driven and knowledge-driven approaches to intelligence-driven models. To address challenges related to privacy protection and regulatory compliance in cross-institutional data collaboration, a "trusted federated evidence-based analysis platform for TCM spleen-stomach diseases" is proposed, integrating blockchain-based smart contracts, federated learning, and secure multi-party computation. The deep integration of AI with privacy-preserving computing is reshaping research and clinical practice in TCM spleen-stomach diseases, providing feasible pathways and a technical framework for building a high-quality, trustworthy TCM big-data ecosystem and achieving precision syndrome differentiation.
2.Mechanism study of SIRT3 alleviating oxidative-stress injury in renal tubular cells by promoting mitochondrial biogenesis via regulating mitochondrial redox balance
Yaojun LIU ; Jun ZHOU ; Jing LIU ; Yunfei SHAN ; Huhai ZHANG ; Pan XIE ; Liying ZOU ; Lingyu RAN ; Huanping LONG ; Lunli XIANG ; Hong HUANG ; Hongwen ZHAO
Organ Transplantation 2026;17(1):86-94
Objective To elucidate the molecular mechanism of sirtuin-3 (SIRT3) in regulating mitochondrial biogenesis in human renal tubular epithelial cells. Methods Cells were stimulated with different concentrations of H2O2 and divided into four groups: control (NC), 50 μmol/L H2O2, 110 μmol/L H2O2 and 150 μmol/L H2O2. SIRT3 protein expression was then measured. SIRT3 was knocked down with siRNA, and cells were further assigned to five groups: control (NC), negative-control siRNA (NCsi), SIRT3-siRNA (siSIRT3), NCsi+H2O2, and siSIRT3+H2O2. After 24 h, cellular adenosine triphosphate (ATP) and mitochondrial superoxide anion (O2•−) levels were determined, together with mitochondrial expression of SIRT3, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), superoxide dismutase 2 (SOD2), acetylated-SOD2 and adenosine monophosphate activated protein kinase α1 (AMPKα1). Results The 110 and 150 μmol/L H2O2 decreased SIRT3 protein (both P<0.05). ATP and mitochondrial O2•− did not differ between NC and NCsi groups (both P>0.05). Compared to the NCsi group, the siSIRT3 group exhibited elevated O2•− level, decreased SIRT3 protein and increased expression levels of SOD2 and acetylated SOD2 protein (all P<0.05). Compared to the NCsi group, the NCsi+H2O2 group exhibited decreased cellular ATP levels, elevated mitochondrial O2•− levels, and reduced protein expression levels of SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 (all P<0.05). Compared with the siSIRT3 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 protein expression levels and a decrease in acetylated SOD2 protein expression levels (all P<0.05). Compared with the NCsi+H2O2 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, AMPKα1, PGC-1α and NRF1, TFAM protein expression levels, and an increase in SOD2 and acetylated SOD2 protein expression levels (all P<0.05). Conclusions SIRT3 promotes mitochondrial biogenesis in tubular epithelial cells via the AMPK/PGC-1α/NRF1/TFAM axis, representing a key mechanism through which SIRT3 ameliorates oxidative stress-induced mitochondrial dysfunction.
3.Clinical study of salvage second allogeneic hematopoietic stem cell transplantation in 17 cases
Wenqiong WANG ; Wei LIU ; Huihui LIU ; Xiaoying YANG ; Shuanglian XIE ; Hongtao LING ; Yiming ZHAO ; Yujun DONG
Organ Transplantation 2026;17(1):124-132
Objective To summarize and analyze the efficacy and influencing factors of second allogeneic hematopoietic stem cell transplantation (allo-HSCT) for acute leukemia relapsing after the first allo-HSCT. Methods Clinical data of 17 patients with acute leukemia who underwent second allo-HSCT at Peking University First Hospital from January 2005 to December 2024 were retrospectively analyzed. Results Among the 17 patients, 7 achieved long-term disease-free survival after second transplantation. The median progression-free survival after successful second transplantation was 7 months (range 8 days to 69 months). The relapse fatality was 24%, and the transplant-related fatality was 35%. Conclusions Second transplantation is an effective treatment for relapsed and refractory acute leukemia, but the relapse fatality and transplant-related fatality remain high. Patient age, time of relapse after the first transplantation and disease status before second transplantation are all factors that affect the efficacy of second transplantation. Younger age, late relapse and complete remission of disease before second transplantation are all beneficial for long-term disease-free survival after second transplantation.
4.Study on the apoptosis-inducing effect of esculetin on acute myeloid leukemia HL-60 cells via regulating the AKT/SKP2/MTH1 pathway
Weihua SONG ; Fuying CHU ; Wei XIE ; Jinliang CHEN ; Ping ZHAO ; Hong QIU ; Jian TAO ; Xiang CHEN
China Pharmacy 2026;37(1):36-41
OBJECTIVE To investigate the apoptosis-inducing effect of esculetin (Esc) on acute myeloid leukemia (AML) HL-60 cells by regulating the protein kinase B (AKT)/S-phase kinase-associated protein 2 (SKP2)/MutT homolog 1 (MTH1) pathway. METHODS AML HL-60 cells were randomly divided into control group (routine culture), Esc low-concentration group (L-Esc group, 25 μmol/L Esc), Esc medium-concentration group (M-Esc group, 50 μmol/L Esc), Esc high-concentration group (H-Esc group, 100 μmol/L Esc), and high-concentration of Esc+ SC79 (AKT agonist) group (100 μmol/L Esc+5 μmol/L SC79). Cell proliferation in each group was detected by MTT assay and colony formation assay. The level of reactive oxygen species (ROS) in cells was measured by using the CM-H2DCFDA fluorescent probe. Cell apoptosis was analyzed by flow cytometry. Western blot assay was performed to detect the expression levels of apoptosis-related proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), cleaved caspase-3], AKT/SKP2/MTH1 pathway-related proteins (p-AKT, AKT, SKP2, MTH1), along with the upstream and downstream proteins of AKT phosphatidylinositol 3-kinase (PI3K), cyclin-dependent kinase inhibitor 1 (P21) and cyclin-dependent kinase inhibitor 1B (P27). RESULTS Compared with control group, the cell viability, colony number, and the phosphorylation levels of AKT and PI3K proteins as well as protein expressions of SKP2, MTH1 and Bcl-2 were significantly decreased (P<0.05), while ROS level, apoptosis rate, and the expression levels of Bax, cleaved caspase-3, P21 and P27 proteins were significantly increased (P<0.05). Moreover, the effects of Esc exhibited concentration-dependence (P<0.05). Compared with H-Esc group, above indexes of high-concentration of Esc+ SC79 group were reversed significantly (P<0.05). CONCLUSIONS Esc may promote massive ROS production and induce activation of apoptosis in HL-60 cells by inhibiting the AKT/SKP2/MTH1 pathway, thus inhibiting the proliferation of HL-60 cells.
5.Construction of a full-cycle management model for T2DM patients led by clinical pharmacists
Yuanyuan JIANG ; Guimei ZHENG ; Yaohua CAO ; Zeyu XIE ; Weiling CAO
China Pharmacy 2026;37(1):92-98
OBJECTIVE To establish a full-cycle management model for type 2 diabetes mellitus (T2DM) patients led by clinical pharmacists. METHODS Based on literature research, a basic framework and items of full-cycle management model led by clinical pharmacists were initially formulated. The Delphi method was adopted to conduct questionnaire inquiries among 26 experts to determine the specific implementation items of the model. The analytic hierarchy process (AHP) method was used to determine the weight values of items at all levels, and the reliability and validity of the model items were analyzed. RESULTS The recovery rates of the two rounds of expert consultation questionnaires were 86.67% and 100%, respectively, and the expert authority coefficient was 0.88. Kendall’s concordance coefficients of the tertiary-level items were 0.064 and 0.084, respectively, and the P values from the χ 2 tests were all less than 0.05; the consistent ratios of the judgment matrices for all levels of AHP model were all less than 0.1. The established full-cycle management led by clinical pharmacists comprised three primary-level items (pharmacy service pathway for T2DM patients during hospitalization, pharmacy management pathway for hypoglycemia in T2DM inpatients, and the pharmacy follow-up pathway for T2DM discharged patients, with weights of 0.098, 0.568 and 0.334, respectively), twelve secondary-level items (e.g. pharmaceutical care during hospitalization for 1 to 2 days, admission assessment and education, with weights ranging from 0.143 to 0.333) and thirty-seven tertiary-level items (e.g. assessment of medication compliance, verification of the medication plan for discharge, with weights ranging from 0.068 to 0.750). Cronbach’s α coefficients for primary-level items and the overall questionnaire were 0.762, 0.879, 0.928 and 0.951, respectively. The item-level and scale-level content validity indexes were 0.967 and 0.808, respectively. CONCLUSIONS A full-cycle management model for T2DM patients led by clinical pharmacists has been constructed successfully, demonstrating high scientificity and reliability.
6.Effect of community comprehensive management model intervention among patients with dyslipidemia
GAO Hui ; XIE Liang ; YAO Chunyang ; WANG Linhong ; JIN Liu ; HU Jie
Journal of Preventive Medicine 2026;38(1):15-19
Objective:
To evaluate the effect of community comprehensive management model intervention among patients with dyslipidemia, so as to provide the reference for optimizing community management strategies and improving the target achievement rate for blood lipids among this population.
Methods:
From May to June 2023, a multi-stage stratified random sampling method was employed to select patients with dyslipidemia from primary healthcare institutions in Jiaxing City, Zhejiang Province. Eligible participants were randomly assigned to either a control group or an intervention group. The control group received routine management, while the intervention group was subjected to a community comprehensive management model in addition to the routine care. Both groups were followed up for 24 months. Data on demographic characteristics, lifestyle behaviors, physical examination indices, and blood biochemical indicators were collected at baseline and after the intervention through questionnaires, physical examinations, and laboratory tests. Changes in obesity rate, central obesity rate, target achievement rates for blood lipids, blood pressure, and blood glucose, as well as lifestyle modifications, were analyzed. Differences between the two groups before and after the intervention were assessed using generalized estimating equations (GEE).
Results:
The control group consisted of 560 patients, including 303 females (54.11%) and 430 individuals aged ≥65 years (76.79%). The intervention group also included 560 patients, with 300 females (53.57%) and 431 individuals aged ≥65 years (76.96%). Before the intervention, no statistically significant differences were observed between the two groups in terms of gender, age, educational level, history of chronic diseases, and atherosclerotic cardiovascular disease risk stratification (all P>0.05). After 24 months of intervention, interaction effects between group and time were observed for obesity rate, central obesity rate, target achievement rate for blood lipids, target achievement rate for blood glucose, composite target achievement rate, physical activity rate, and medication adherence (all P<0.05). Specifically, the intervention group demonstrated lower rates of obesity and central obesity, and higher target achievement rate of blood lipids, target achievement rate of blood glucose, composite target achievement rate, physical activity rate, and medication adherence compared to the control group.
Conclusion
The community comprehensive management model contributed to improvements in multiple metabolic parameters (including body weight, waist circumference, blood lipids, and blood glucose) among patients with dyslipidemia, and was associated with increased physical activity rate and medication adherence.
7.Comparison of the predictive performance of SARIMA, Prophet, and BSTS models in forecasting the incidence of hand, foot, and mouth disease
LU Wenhai ; KONG Xiaojie ; SONG Lixia ; LU Chunru ; YU Bikun ; XIE Yan
Journal of Preventive Medicine 2026;38(1):79-84
Objective:
To compare the predictive performance of the seasonal autoregressive integrated moving average (SARIMA) model, the Prophet model, and the Bayesian structural time series (BSTS) model in forecasting the incidence of hand, foot, and mouth disease (HFMD) , so as to provide a basis for optimizing the early warning system of this disease.
Methods:
Weekly incidence data of HFMD in Longgang District, Shenzhen City from 2014 to 2024 were collected. The HFMD incidence data from 2014-2019 and 2023 were used as the training set to construct SARIMA, Prophet, and BSTS models, while the data from 2024 were used as the test set to compare and evaluate the predictive performance of the three models. The technique for order preference by similarity to ideal solution (TOPSIS) method was employed to calculate the C-value. This approach integrates multiple evaluation metrics, such as the mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), and symmetric mean absolute percentage error (SMAPE), to comprehensively assess model performance.
Results:
A total of 150 111 cases of HFMD were reported in Longgang District from 2014 to 2024, with an average annual incidence of 400.72/105. The weekly incidence fluctuated between 0 and 63.78/105, exhibiting a bimodal seasonal pattern characterized by a primary peak from May to July and a secondary peak from September to October. In the training set, all three models demonstrated a good fit to the bimodal epidemic trend of HFMD, with the BSTS model achieving the best fit. The BSTS model yielded performance metrics as follows: MAE=0.124, MSE=0.050, RMSE=0.223, SMAPE=0.021, and a C-value of 1.000. In the test set, all three models, including SARIMA, Prophet, and BSTS, performed well for short-term predictions (≤16 weeks), with the Prophet model showing relatively superior predictive performance. However, the prediction accuracy of all models declined as the forecast horizon extended. During the primary peak period (May-July), the Prophet model exhibited better predictive performance, whereas the BSTS model performed relatively better during the secondary peak period (September-October).
Conclusions
For the short-term forecasting of weekly HFMD incidence, the Prophet model outperformed both the SARIMA and BSTS models. During the primary peak period, the Prophet model demonstrated superior predictive performance, whereas the BSTS model exhibited better accuracy in forecasting the secondary peak period.
8.Effect of Anmeidan in Ameliorating Neuronal Synaptic Structural and Functional Impairment in Aged Sleep Deprivation Model via EphA4/ephrinA3 Signaling Pathway
Junlu ZHANG ; Guangjing XIE ; Ping WANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):36-45
ObjectiveTo investigate the effects of Anmeidan (AMD) on protein expression of the ephrin type-A receptor 4 (EphA4)/ephrinA3 signaling pathway and synaptic structural function in an aged sleep deprivation model. MethodsSeventy-two 18-month-old aged mice were randomly divided into a blank group, a model group, AMD high-, medium-, and low-dose groups (26.26, 13.13, 6.565 g·kg-1·d-1, respectively), and a melatonin group (1.3 mg·kg-1·d-1), with 12 mice in each group. Cognitive function was assessed using the novel object recognition test. Hematoxylin-eosin (HE) staining was used to observe cell number and morphology in hippocampal tissues, and Nissl staining was performed to examine cellular structure and quantify Nissl bodies. Transmission electron microscopy was used to observe synaptic ultrastructure, with emphasis on changes in synaptic morphology and structure. Western blot was employed to detect the expression levels of EphA4, ephrinA3, brain-derived neurotrophic factor (BDNF), glutamate aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), growth-associated protein 43 (GAP43), postsynaptic density protein 95 (PSD95), and synaptophysin (SYN) in hippocampal tissues. Immunofluorescence double labeling was performed to co-stain EphA4 and ephrinA3 with glial fibrillary acidic protein (GFAP) and neuronal nuclei antigen (NeuN), respectively, to observe the colocalization of target proteins with neurons and astrocytes. ResultsCompared with the blank group, the model group exhibited increased exploration time of familiar objects (P<0.01), while exploration time of novel objects and the recognition index were decreased (P<0.01). The number of neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus was reduced, Nissl bodies were decreased, and synaptic structures were damaged. Protein expression levels of BDNF, GLAST, GLT-1, GAP43, PSD95, and SYN in hippocampal tissues were decreased, whereas the expression levels of EphA4, ephrinA3, and GFAP were increased. Compared with the model group, the AMD low-, medium-, and high-dose groups and the melatonin group showed increased exploration time of novel objects and higher novel object recognition indices (P<0.01), along with significantly reduced exploration time of familiar objects (P<0.01). Neuronal damage in the CA1 and DG regions was ameliorated, the number of Nissl bodies in the CA1 region was increased, and organelle and synaptic structural damage was alleviated. Protein expression levels of BDNF, GLAST, GLT-1, GAP43, PSD95, and SYN were increased, and protein expression levels of EphA4, ephrinA3, and GFAP were decreased (P<0.05,P<0.01). ConclusionAMD can regulate protein expression of the EphA4/ephrinA3 signaling pathway in an aged sleep deprivation model, enhance synaptic protein expression, and improve neuronal synaptic damage.
9.Interpretation of Pharmacovigilance Guidelines for Clinical Application of Oral Chinese Patent Medicines
Wenxi PENG ; Meng QIAO ; Lianxin WANG ; Yuanyuan LI ; Xiuhui LI ; Xin CUI ; Zijia CHEN ; Xinyi CHEN ; Yi DENG ; Yanming XIE ; Zhifei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):152-160
The Pharmacovigilance Guidelines for Clinical Application of Oral Chinese Patent Medicines (hereinafter referred to as the Guidelines) is first specialized in the field of drug safety for oral Chinese patent medicines (OCPMs) in China. Rooted in China's healthcare context, the Guidelines address the unique usage patterns and risk characteristics of OCPMs, filling a regulatory gap in the pharmacovigilance framework specific to this category. To facilitate accurate understanding and effective implementation of the Guidelines, and to promote the standardized development of pharmacovigilance practices for OCPMs, this study offered a systematic interpretation based on its three core components. In the domain of risk monitoring and reporting, the paper analyzed the rationale for multi-source information integration and clarified the criteria for identifying key products and target populations for intensive monitoring. Regarding risk assessment, the Guidelines were examined from three dimensions of formulation components, medication behaviors, and population to address complex safety issues arising from medicinal constituents, irrational use, and individual susceptibility. In the area of risk control, the analysis focused on context-based interventions and dynamic closed-loop management strategies, exploring practical pathways to shift from passive response to proactive risk mitigation. Furthermore, this paper evaluated the applied value of the Guidelines and identified implementation challenges, such as insufficient capacity at the primary-care level and limited digital infrastructure. In response, the study proposed optimization strategies including establishing a dynamic updating mechanism, strengthening training at the grassroots level, and incorporating artificial intelligence to enhance pharmacovigilance capacity. This interpretation aims to provide actionable insights for marketing authorization holders (including manufacturers), pharmaceutical distributors, healthcare institutions, and research organizations, ultimately supporting the establishment and refinement of a full lifecycle pharmacovigilance system for OCPMs.
10.Yishen Tongluo Prescription Ameliorates Oxidative Stress Injury in Mouse Model of Diabetic Kidney Disease via Nrf2/HO-1/NQO1 Signaling Pathway
Yifei ZHANG ; Xuehui BAI ; Zijing CAO ; Zeyu ZHANG ; Jingyi TANG ; Junyu XI ; Shujiao ZHANG ; Shuaixing ZHANG ; Yiran XIE ; Yuqi WU ; Zhongjie LIU ; Weijing LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):41-51
ObjectiveTo investigate the effect and mechanism of Yishen Tongluo prescription in protecting mice from oxidative stress injury in diabetic kidney disease (DKD) via the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/NAD(P)H quinone oxidoreductase 1 (NQO1) signaling pathway. MethodsSpecific pathogen-free (SPF) male C57BL/6 mice were assigned into a control group (n=10) and a modeling group (n=50). The DKD model was established by intraperitoneal injection of streptozotocin. The mice in the modeling group were randomized into a model group, a semaglutide (40 μg·kg-1) group, and high-, medium-, and low-dose (18.2, 9.1, 4.55 g·kg-1, respectively) Yishen Tongluo prescription groups, with 10 mice in each group. The treatment lasted for 12 weeks. Blood glucose and 24-h urine protein levels were measured, and the kidney index (KI) was calculated. Serum levels of creatinine (SCr), blood urea nitrogen (BUN), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were assessed. The pathological changes in the renal tissue were evaluated by hematoxylin-eosin, periodic acid-Schiff, periodic acid-silver methenamine, and Masson’s trichrome staining. Enzyme-linked immunosorbent assay kits were used to measure the levels of β2-microglobulin (β2-MG), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), liver fatty acid-binding protein (L-FABP), nitric oxide synthase (NOS), glutathione (GSH), total antioxidant capacity (T-AOC), and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Immunohistochemical staining was performed to examine the expression of Kelch-like ECH-associated protein 1 (Keap1) and malondialdehyde (MDA). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of factors in the Nrf2/HO-1/NQO1 signaling pathway. ResultsCompared with the control group, the DKD model group showed rises in blood glucose, 24-h urine protein, KI, SCr, BUN, and ALT levels, along with glomerular hypertrophy, renal tubular dilation, thickened basement membrane, mesangial expansion, and collagen deposition. Additionally, the model group showed elevated levels of β2-MG, NGAL, KIM-1, L-FABP, NOS, and 8-OHdG, lowered levels of GSH and T-AOC, up-regulated expression of MDA and Keap1, and down-regulated expression of Nrf2, HO-1, NQO1, and glutamate-cysteine ligase catalytic subunit (GCLC) (P<0.05). Compared with the model group, the semaglutide group and the medium- and high-dose Yishen Tongluo prescription groups showed reductions in blood glucose, 24-h urine protein, KI, SCr, BUN, and ALT levels, along with alleviated pathological injuries in the renal tissue. In addition, the three groups showed lowered levels of β2-MG, NGAL, KIM-1, L-FABP, NOS, and 8-OHdG, elevated levels of GSH and T-AOC, down-regulated expression of MDA and Keap1, and up-regulated expression of Nrf2, HO-1, NQO1, and GCLC (P<0.05). ConclusionYishen Tongluo prescription exerts renoprotective effects in the mouse model of DKD by modulating the Nrf2/HO-1/NQO1 signaling pathway, mitigating oxidative stress, and reducing renal tubular injuries.


Result Analysis
Print
Save
E-mail