1.Study on preventative and curative effects of astragaloside (AST) on mice memory impairment and expression of amyloid precursor protein and beta secretase mRNA induced by dexamethasone.
Wen ZHANG ; Weizu LI ; Weiping LI ; Xiangxiang SUN ; Susu ZHOU ; Xiaoqun XU
China Journal of Chinese Materia Medica 2010;35(5):642-646
OBJECTIVETo study the protective effects of astragaloside (AST) on memory impairment and the expression levels of amyloid precursor protein (APP) and its mRNA, alpha secretase and beta secretase mRNA in the brain of mice induced by dexamethasone (DEX).
METHODMice were randomly divided into six groups: control group, model group, AST ( 10, 20, 40 mg x kg(-1)) groups and ginsenoside Rg1 (6.5 mg x kg(-1)) group. The animal models of dysmnesy mice were established by intragastrical administration of DEX (5 mg x kg(-1)) for 21 days. Subsequently, the dysmnesy mice were treated by intragastrical administration of ginsenoside Rg1 and different doses of AST (10, 20, 40 mg x kg(-1)), respectively. Morris water maze was applied to evaluate the learning and memory function in mice. The expression of APP, alpha secretase and beta secretase mRNA were analysed by RT-PCR, and immunohistochemistry was used to evaluate the expression levels of APP in cerebral cortex, hippocampus CA1 and CA3.
RESULTAST (20, 40 mg x kg(-1)) could improve the learning and memory function in mice (P<0.05, P<0.01), decrease the expression levels of APP and beta secretase mRNA (P<0.05), increase the expression level of alpha secretase mRNA (P<0.05), and decrease the expression level of APP in cerebral cortex and hippocampus CA1 (P<0.05).
CONCLUSIONAST could improve the learning and memory function in mice, which mechanism may contribtuted to the expression inhibition of APP and APP mRNA, beta secretase mRNA, and promotion of the expression of alpha secretase mRNA.
Amyloid Precursor Protein Secretases ; genetics ; Amyloid beta-Protein Precursor ; genetics ; Animals ; Dexamethasone ; pharmacology ; Male ; Memory Disorders ; drug therapy ; prevention & control ; Mice ; RNA, Messenger ; analysis ; Saponins ; pharmacology ; Triterpenes ; pharmacology
2.Study on expression of PS1 in APP-PS1 double gene stably transfected cell lines and its relation to gamma-secretase.
Ping LIANG ; Yang-xing PAN ; Xue-mei ZHAO ; Hong-zhen DU ; Ji-min ZHANG
Chinese Journal of Pathology 2005;34(5):297-301
OBJECTIVETo study the role of presenilin1 (PS1) in the processing of beta-amyloid precursor protein (APP) to amyloid beta-peptide (Abeta) and its relation to gamma-secretase in the pathogenesis of Alzheimer's disease (AD).
METHODSSeveral CHO cell lines stably transfected with either wide-type or mutant PS1 (M(146)L) along with APP(751) genes were established. The expression of PS1 and its half-life were determined by immunoprecipitation, Western blotting and pulse-chase experiment. Abeta released into the conditional media was quantitated by ELISA.
RESULTSPS1 transfected CHO cells expressed an expected 45,000 full length protein. This over-expressed full length PS1 was subject to fast degradation with a half-life of less than 1 hour. In contrast to full length PS1, the truncated N-terminal and C-terminal proteins of PS1 were significantly more stable with a longer half-life of nearly 16 hours. Although the total amount of Abeta released into the conditional media did not show a significant difference between wild-type and mutant PS1 (M(146)L) transfected APP cells, mutant PS1 (M(146)L) transfected APP cells increase Abeta(1 - 42) (a subspecies of total Abeta) production with nearly a 2 fold increase, comparing to untransfected or wild-type PS1 transfected APP cells.
CONCLUSIONPS1 is involved in the processing of APP to Abeta, a nearly 2 fold increase of Abeta production in mutant PS1 (M(146)L) transfected APP cells indicates that PS1 may be the expected gamma-secretase itself.
Alzheimer Disease ; etiology ; metabolism ; Amyloid Precursor Protein Secretases ; genetics ; metabolism ; Amyloid beta-Peptides ; metabolism ; Amyloid beta-Protein Precursor ; genetics ; Animals ; CHO Cells ; Cricetinae ; Cricetulus ; Mutation ; Peptide Fragments ; metabolism ; Presenilin-1 ; genetics ; metabolism ; Transfection
3.Osthole suppresses amyloid precursor protein expression by up-regulating miRNA-101a-3p in Alzheimer's disease cell model.
Ying LIN ; Yingjia YAO ; Xicai LIANG ; Yue SHI ; Liang KONG ; Honghe XIAO ; Yutong WU ; Yingnan NI ; Jingxian YANG
Journal of Zhejiang University. Medical sciences 2018;47(5):473-479
OBJECTIVE:
To investigate the effect of osthole on the expression of amyloid precursor protein (APP) in Alzheimer's disease (AD) cell model and its mechanism.
METHODS:
The SH-SY5Y cell with over expression of APP was established by transfection by liposome 2000. The cells were treated with different concentrations of osthole, and the cell viability was determined by MTT and lactate dehydrogenase (LDH) assay. The differentially expressed miRNAs with and without osthole treatment were detected by miRNA array, and the target genes binding to the differentially expressed miRNAs were identified and verified by databases and Cytoscape. After the inhibitor of the differentially expressed miRNA was transduced into cells, the changes of APP and amyloid β (Aβ) protein were determined by immunofluorescence cytochemistry, and the mRNA expression of APP was determined by RT-PCR.
RESULTS:
The AD cell model with over expression of APP was established successfully. The results of MTT and LDH assay showed that osthole had a protective effect on cells and alleviated cell damage. miR-101a-3p was identified as the differentially expressed miRNA, which was binding to the 3'-UTR of APP. Compared with APP group, the expression of APP and Aβ protein and APP mRNA increased in the miR-101a-3p inhibitor group (all <0.01), while the expression of APP and Aβ protein and APP mRNA decreased in the cells with osthole treatment (all <0.01).
CONCLUSIONS
Osthole inhibits the expression of APP by up-regulating miR-101a-3p in AD cell model.
Alzheimer Disease
;
Amyloid beta-Peptides
;
Amyloid beta-Protein Precursor
;
genetics
;
Cell Line
;
Coumarins
;
pharmacology
;
Gene Expression Regulation
;
drug effects
;
genetics
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
4.Serum metabolomics study of Psoraleae Fructus in improving learning and memory ability of APP/PS1 mice.
Jia-Ming GU ; Hui XUE ; Ao XUE ; Jing JIANG ; Fang GENG ; Ji-Hui ZHAO ; Bo YANG ; Ning ZHANG
China Journal of Chinese Materia Medica 2023;48(15):4039-4045
This study aimed to investigate the mechanism of Psoraleae Fructus in improving the learning and memory ability of APP/PS1 mice by serum metabolomics, screen the differential metabolites of Psoraleae Fructus on APP/PS1 mice, and reveal its influence on the metabolic pathway of APP/PS1 mice. Thirty 3-month-old APP/PS1 mice were randomly divided into a model group and a Psoraleae Fructus extract group, and another 15 C57BL/6 mice of the same age were assigned to the blank group. The learning and memory ability of mice was evaluated by the Morris water maze and novel object recognition tests, and metabolomics was used to analyze the metabolites in mouse serum. The results of the Morris water maze test showed that Psoraleae Fructus shortened the escape latency of APP/PS1 mice(P<0.01), and increased the number of platform crossing and residence time in the target quadrant(P<0.01). The results of the novel object recognition test showed that Psoraleae Fructus could improve the novel object recognition index of APP/PS1 mice(P<0.01). Eighteen differential metabolites in serum were screened out by metabolomics, among which the levels of arachidonic acid, tryptophan, and glycerophospholipid decreased after drug administration, while the levels of glutamyltyrosine increased after drug administration. The metabolic pathways involved included arachidonic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism, linoleic acid metabolism, α-linolenic acid metabolism, and glycerolipid metabolism. Therefore, Psoraleae Fructus can improve the learning and memory ability of APP/PS1 mice, and its mechanism may be related to the effects in promoting energy metabolism, reducing oxidative damage, protecting central nervous system, reducing neuroinflammation, and reducing Aβ deposition. This study is expected to provide references for Psoraleae Fructus in the treatment of Alzheimer's disease(AD) and further explain the mechanism of Psoraleae Fructus in the treatment of AD.
Mice
;
Animals
;
Amyloid beta-Protein Precursor/genetics*
;
Mice, Transgenic
;
Arachidonic Acid
;
Tryptophan
;
Mice, Inbred C57BL
;
Alzheimer Disease/genetics*
;
Maze Learning
;
Glycerophospholipids
;
Disease Models, Animal
;
Amyloid beta-Peptides/metabolism*
5.Chronic sleep deprivation exacerbates cognitive and pathological impairments in APP/PS1/tau triple transgenic Alzheimer's disease model mice.
Chun WANG ; Xu CAO ; Jing YIN ; Wen-Rui GAO ; Wei-Ran LI ; Jin-Shun QI ; Mei-Na WU
Acta Physiologica Sinica 2021;73(3):471-481
Sleep exerts important functions in the regulation of cognition and emotion. Recent studies have found that sleep disorder is one of the important risk factors for Alzheimer's disease (AD), but the effects of chronic sleep deprivation on the cognitive functions of AD model mice and its possible mechanism are still unclear. In the present study, 8-month-old male APP/PS1/tau triple transgenic AD model (3xTg-AD) mice and wild type (WT) mice (n = 8 for each group) were subjected to chronic sleep deprivation by using the modified multiple platform method, with 20 h of sleep deprivation each day for 21 days. Then, open field test, elevated plus maze test, sugar water preference test, object recognition test, Y maze test and conditioned fear memory test were performed to evaluate anxiety- and depression-like behaviors, and multiple cognitive functions. In addition, the immunohistochemistry technique was used to observe pathological characteristics in the hippocampus of mice. The results showed that: (1) Chronic sleep deprivation did not affect anxiety- (P = 0.539) and depression-like behaviors (P = 0.874) in 3xTg-AD mice; (2) Chronic sleep deprivation exacerbated the impairments of object recognition memory (P < 0.001), working memory (P = 0.002) and the conditioned fear memory (P = 0.039) in 3xTg-AD mice; (3) Chronic sleep deprivation increased amyloid β (Aβ) deposition (P < 0.001) and microglial activation (P < 0.001) in the hippocampus of 3xTg-AD mice, without inducing abnormal tau phosphorylation and neurofibrillary tangles. These results indicate that chronic sleep deprivation exacerbates the impairments of recognition memory, working memory and conditioned fear memory in 3xTg-AD mice by aggravating Aβ deposition and the excessive activation of microglia in the hippocampus.
Alzheimer Disease
;
Amyloid beta-Peptides
;
Amyloid beta-Protein Precursor/genetics*
;
Animals
;
Cognition
;
Disease Models, Animal
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Presenilin-1
;
Sleep Deprivation
;
tau Proteins
6.Analysis of differential plaque depositions in the brains of Tg2576 and Tg-APPswe/PS1dE9 transgenic mouse models of Alzheimer disease.
Tae Kyung KIM ; Jung Eun LEE ; Sun Kyu PARK ; Kang Woo LEE ; Ji Seon SEO ; Joo Young IM ; Sang Tae KIM ; Joo Yong LEE ; Yang Hee KIM ; Ja Kyeong LEE ; Pyung Lim HAN
Experimental & Molecular Medicine 2012;44(8):492-502
Adequate assessment of plaque deposition levels in the brain of mouse models of Alzheimer disease (AD) is required in many core issues of studies on AD, including studies on the mechanisms underlying plaque pathogenesis, identification of cellular factors modifying plaque pathology, and developments of anti-AD drugs. The present study was undertaken to quantitatively evaluate plaque deposition patterns in the brains of the two popular AD models, Tg2576 and Tg-APPswe/PS1dE9 mice. Coronally-cut brain sections of Tg2576 and Tg-APPswe/PS1dE9 mice were prepared and plaque depositions were visualized by staining with anti-amyloid beta peptides antibody. Microscopic images of plaque depositions in the prefrontal cortex, parietal cortex, piriform cortex and hippocampus were obtained and the number of plaques in each region was determined by a computer-aided image analysis method. A series of optical images representing a gradual increase of plaque deposition levels were selected in the four different brain regions and were assigned in each with a numerical grade of 1-6, where +1 was lowest and +6, highest, so that plaques per unit in mm2 increased "sigmoidally" over the grading scales. Analyzing plaque depositions using the photographic plaque reference panels and a computer-aid image analysis method, it was demonstrated that the brains of Tg2576 mice started to accumulate predominantly small plaques, while the brains of Tg-APPswe/PS1dE9 mice deposited relatively large plaques.
Alzheimer Disease/genetics/*pathology
;
Amyloid beta-Protein Precursor/genetics/metabolism
;
Animals
;
Disease Models, Animal
;
Humans
;
Mice
;
Mice, Transgenic
;
Plaque, Amyloid/*pathology
7.Knock-down of ROCK2 gene improves cognitive function and reduces neuronal apoptosis in AD mice by promoting mitochondrial fusion and inhibiting its division.
Minfang GUO ; Huiyu ZHANG ; Peijun ZHANG ; Jingwen YU ; Tao MENG ; Suyao LI ; Lijuan SONG ; Zhi CHAI ; Jiezhong YU ; Cungen MA
Chinese Journal of Cellular and Molecular Immunology 2023;39(8):701-707
Objective To explore the effect of knocking down Rho-associated coiled-coil kinase (ROCK2) gene on the cognitive function of amyloid precursor protein/presenilin-1 (APP/PS1) double transgenic mice and its mechanism. Methods APP/PS1 double transgenic mice were randomly divided into AD model group (AD group), ROCK2 gene knock-down group (shROCK2 group), ROCK2 gene knock-down control group (shNCgroup), and wild-type C57BL/6 mice of the same age served as the wild-type control (WT group). Morris water maze and Y maze were employed to test the cognitive function of mice. Neuron morphology was detected by Nissl staining. Immunofluorescence histochemical staining was used to detect the expression of phosphorylated dynamin-related protein 1 (p-Drp1) and mitochondrial fusion 1 (Mfn1). Western blot analysis was used to detect the expression ROCK2, cleaved-caspase-3 (c-caspase-3), B-cell lymphoma 2 (Bcl2), Bcl2-related protein X (BAX), p-Drp1, mitochondrial fission 1 (Fis1), optic atrophy 1 (OPA1), Mfn1 and Mfn2. Results Compared with AD group mice, the expression of ROCK2 in shROCK2 group mice was significantly reduced; the cognitive function was significantly improved with the number of neurons in the hippocampal CA3 and DG areas increasing, and nissl bodies were deeply stained; the expression of c-caspase-3 and BAX was decreased, while the expression of Bcl2 was increased; the expression of mitochondrial division related proteins p-Drp1 and Fis1 were decreased, while the expression of mitochondrial fusion-related proteins OPA1, Mfn1 and Mfn2 were increased. Conclusion Knock-down of ROCK2 gene can significantly improve the cognitive function and inhibit the apoptosis of nerve cells of APP/PS1 mice. The mechanism may be related to promoting mitochondrial fusion and inhibiting its division.
Animals
;
Mice
;
Alzheimer Disease/pathology*
;
Amyloid beta-Peptides/metabolism*
;
Amyloid beta-Protein Precursor
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein
;
Caspase 3
;
Cognition
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Mitochondrial Dynamics/genetics*
8.Effect of heart benefiting recipe in controlling IL-1beta, IL-6 and APPmRNA expression in brain of beta-amyloid protein induced rat model of dementia.
Hui ZHOU ; Wei-kang ZHAO ; Guo-qin JIN
Chinese Journal of Integrated Traditional and Western Medicine 2004;24(6):529-533
OBJECTIVETo investigate the neuro-immune regulatory mechanism of Heart Benefiting recipe (HBR), an effective recipe for treatment of Alzheimer's disease (AD).
METHODSUsing immunohistochemical and RT-PCR methods, the neuro-immunological pathological changes in the AD rat model induced by beta-amyloid protein (A beta1-40) via lateral cerebral ventricle injection, including mainly the glial fibrillary acidic protein expression and inflammatory cytokines IL-1beta, IL-6mRNA and beta-amyloid protein precursor (APPmRNA) gene expression were studied. And the effects of HBR on these parameters were observed.
RESULTSDeposition of A beta in cerebral tissue could induce activation of stellate glial cells and abnormal increased levels of inflammatory cytokines (IL-1beta and IL-6mRNA), also the elevation of APPmRNA level. HBR could effectively control the above-mentioned pathological changes.
CONCLUSIONHBR could effectively control the inflammation and the A beta immune cascade reaction in brain of AD patients, it is one of the important therapeutic mechanisms of the recipe.
Alzheimer Disease ; chemically induced ; metabolism ; Amyloid beta-Peptides ; Amyloid beta-Protein Precursor ; biosynthesis ; genetics ; Animals ; Brain ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Interleukin-1 ; biosynthesis ; genetics ; Interleukin-6 ; biosynthesis ; genetics ; Male ; Neuroprotective Agents ; pharmacology ; RNA, Messenger ; biosynthesis ; genetics ; Random Allocation ; Rats
9.circBIRC6 contributes to the development of non-small cell lung cancer via regulating microRNA-217/amyloid beta precursor protein binding protein 2 axis.
Da NI ; Jiping TENG ; Youshuang CHENG ; Zhijun ZHU ; Bufeng ZHUANG ; Zhiyin YANG
Chinese Medical Journal 2022;135(6):714-723
BACKGROUND:
Circular RNAs (circRNAs) are considered to be important regulators in cancer biology. In this study, we focused on the effect of circRNA baculoviral inhibitor of apoptosis protein (IAP) repeat containing 6 (circBIRC6) on non-small cell lung cancer (NSCLC) progression.
METHODS:
The NSCLC and adjacent non-tumor tissues were collected at Shanghai Ninth People's Hospital. Quantitative real-time polymerase chain reaction was conducted for assessing the levels of circBIRC6, amyloid beta precursor protein binding protein 2 (APPBP2) messenger RNA (mRNA), baculoviral IAP repeat containing 6 mRNA (BIRC6), and microRNA-217 (miR-217). Western blot assay was adopted for measuring the protein levels of APPBP2, E-cadherin, N-cadherin, and vimentin. Colony formation assay, transwell assay, and flow cytometry analysis were utilized for evaluating cell colony formation, metastasis, and apoptosis. Dualluciferase reporter assay and RNA immunoprecipitation assay were carried out to determine the interaction between miR-217 and circBIRC6 and APPBP2 in NSCLC tissues. The murine xenograft model assay was used to investigate the function of circBIRC6 in tumor formation in vivo. Differences were analyzed via Student's t test or one-way analysis of variance. Pearson's correlation coefficient analysis was used to analyze linear correlation.
RESULTS:
CircBIRC6 was overexpressed in NSCLC tissues and cells. Knockdown of circBIRC6 repressed the colony formation and metastasis and facilitated apoptosis of NSCLC cells in vitro and restrained tumorigenesis in vivo. Mechanically, circBIRC6 functioned as miR-217 sponge to promote APPBP2 expression in NSCLC cells. MiR-217 inhibition rescued circBIRC6 knockdown-mediated effects on NSCLC cell colony formation, metastasis, and apoptosis. Overexpression of miR-217 inhibited the malignant phenotypes of NSCLC cells, while the effects were abrogated by elevating APPBP2.
CONCLUSIONS
CircBIRC6 aggravated NSCLC cell progression by elevating APPBP2 via sponging miR-217, which might provide a fresh perspective on NSCLC therapy.
Amyloid beta-Peptides/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Animals
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
China
;
Gene Expression Regulation, Neoplastic/genetics*
;
Humans
;
Lung Neoplasms/pathology*
;
Mice
;
MicroRNAs/metabolism*
;
RNA, Circular/genetics*
;
RNA, Messenger
10.Effects of huannao yicong recipe extract on the learning and memory and related factors of Abeta generation in the brain of APP transgenic mice.
Hao LI ; Ming-Fang LIU ; Jian-Gang LIU ; Long-Tao LIU ; Jie GUAN ; Ling-Ling CAI ; Jia HU ; Yun WEI
Chinese Journal of Integrated Traditional and Western Medicine 2013;33(1):90-94
OBJECTIVETo study the effects of Huannao Yicong Recipe (HNYCR)extract on the learning and memory ability, and the expressions of amyloid precursor protein (APP), beta-site APP-cleaving enzyme 1 (BACE1), presenilin-1 (PS-1), and beta amyloid protein (Abeta)in hippocampus CA1 area of APP transgenic mice, and to explore its mechanisms for treating Alzheimer's disease (AD).
METHODSTotally 3-month-old APP695V7171 transgenic mice were used to establish the AD model in this research. They were randomly divided into the model group, the Donepezil group, the large dose HNYCR extract group, the small dose HNYCR extract group, and the normal control group (C57BL/6J mice), 15 in each group. These animals were gavaged for 4 continuous months. Relevant indicators were detected: Morris water maze test was used to measure the spatial learning and memory ability. The immunohistochemical assay was used to detect the expressions of APP, BACE1, PS-1, and Abeta.
RESULTSThe times of crossing the original platform and the swimming time and distance in the fourth quadrant of the 7-month-old APP transgenic mice were significantly reduced in Morris water maze test, when compared with the normal control group (P < 0.01). The times of crossing original platform and the swimming time and distance in the fourth quadrant of all treatment groups significantly increased in Morris water maze test, when compared with the model group (P < 0.05). The expressions of APP, BACE1, PS-1, and Abeta in hippocampus CA1 area of 7-month-old model mice increased significantly (P < 0.01), when compared with the normal control group. The expressions of APP, BACE1, PS-1, and Abeta in each 7-month-old intervention groups were significantly reduced, when compared with the model group (P < 0.01).
CONCLUSIONEarly application of HNYCR extract can obviously improve the learning and memory ability of APP transgenic mice that has declined, reduce the expressions of APP, BACE1, PS-1, and Abeta in the hippocampal CA1 area, reduce the production of Abeta, and slow down the pathological process of brains in APP transgenic mice.
Alzheimer Disease ; metabolism ; Amyloid Precursor Protein Secretases ; genetics ; metabolism ; Amyloid beta-Peptides ; genetics ; metabolism ; Amyloid beta-Protein Precursor ; genetics ; metabolism ; Animals ; Aspartic Acid Endopeptidases ; genetics ; metabolism ; Brain ; drug effects ; metabolism ; CA1 Region, Hippocampal ; drug effects ; metabolism ; Disease Models, Animal ; Drugs, Chinese Herbal ; pharmacology ; Female ; Male ; Maze Learning ; drug effects ; Memory ; drug effects ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Presenilin-1 ; genetics ; metabolism