1.Effect of active component compound of Epimedii Folium,Astragali Radix,and Puerariae Lobatae Radix on expression of ADAM17 in HT22 cells by mediating hepcidin.
Xian-Hui DONG ; Xiao-Ping HE ; Tian-Ci ZHANG ; Dong-Xue MA ; Jia-Qi LI ; Xiao-Xiao LIU ; Hao LI ; Wei-Juan GAO
China Journal of Chinese Materia Medica 2021;46(23):6224-6230
Alzheimer's disease(AD) patients in China have been surging, and the resultant medical burden and care demand have a huge impact on the development of individuals, families, and the society. The active component compound of Epimedii Folium, Astragali Radix, and Puerariae Lobatae Radix(YHG) can regulate the expression of iron metabolism-related proteins to inhibit brain iron overload and relieve hypofunction of central nervous system in AD patients. Hepcidin is an important target regulating iron metabolism. This study investigated the effect of YHG on the expression of a disintegrin and metalloprotease-17(ADAM17), a key enzyme in the hydrolysis of β amyloid precursor protein(APP) in HT22 cells, by mediating hepcidin. To be specific, HT22 cells were cultured in vitro, followed by liposome-mediated siRNA transfection to silence the expression of hepcidin. Real-time PCR and Western blot were performed to examine the silencing result and the effect of YHG on hepcidin in AD cell model. HT22 cells were randomized into 7 groups: control group, Aβ25-35 induction(Aβ) group, hepcidin-siRNA(siRNA) group, Aβ25-35 + hepcidin-siRNA(Aβ + siRNA) group, Aβ25-35+YHG(Aβ+YHG) group, hepcidin-siRNA+YHG(siRNA+YHG) group, Aβ25-35+hepcidin-siRNA+YHG(Aβ+siRNA+YHG) group. The expression of ADAM17 mRNA in cells was detected by real-time PCR, and the expression of ADAM17 protein by immunofluorescence and Western blot. Immunofluorescence showed that the ADAM17 protein expression was lower in the Aβ group, siRNA group, and Aβ+siRNA group than in the control group(P<0.05) and the expression was lower in the Aβ+siRNA group(P<0.05) and higher in the Aβ+YHG group(P<0.05) than in the Aβ group. Moreover, the ADAM17 protein expression was lower in the Aβ+siRNA group(P<0.05) and higher in the siRNA+YHG group(P< 0.05) than in the siRNA group. The expression was higher in the Aβ+siRNA+YHG group than in the Aβ+siRNA group(P<0.05). The results of Western blot and real-time PCR were consistent with those of immunofluorescence. The experiment showed that YHG induced hepcidin to up-regulate the expression of ADAM17 in AD cell model and promote the activation of non-starch metabolic pathways, which might be the internal mechanism of YHG in preventing and treating AD.
ADAM17 Protein
;
Alzheimer Disease/genetics*
;
Amyloid beta-Peptides
;
Drugs, Chinese Herbal/pharmacology*
;
Hepcidins/genetics*
;
Humans
;
Pueraria
2.Effect of puerarin and ligustrazine on cultured hippocampal neurons injury induced by Abeta25-35.
Yu WANG ; Hai-Tong WAN ; Wei-Min YAN ; Jie-Hong YANG ; Ying GUO ; Yuan-Jiang PAN ; Jin HAN ; Qin YU
China Journal of Chinese Materia Medica 2008;33(4):424-427
OBJECTIVETo investigate the changes of MDA, SOD, LDH of cultured hippocampal neurons injury induced by amyloid-beta protein (Abeta 25-35) and the protective effect of puerarin and ligustrazine.
METHODPrimary hippocampal neurons were cultured and induced by Abeta 25-35. The concentrations of MDA, SOD and LDH in cultured hippocampal neurons were measured after exposed to Abeta 25-35, puerarin and ligustrazine.
RESULTThe Alzheimer disease (AD) model was successfully established in cultured hippocampal neurons. AD group has remarkably increased MDA and LDH level, and decreased SOD level, Piracetan group and combined application group of have remarkably decreased MDA and LDH level and increased SOD level, compared with AD group (P < 0.01). Ligustrazine together with puerarin group has remarkably decreased MDA and LDH level and increased SOD level, compared with ligustrazine group and puerarin group (P < 0.05).
CONCLUSIONAbeta 25-35 can induce cultured hippocampal neurons injury, combined application of ligustrazine, and puerarin can alleviate the injury.
Amyloid beta-Peptides ; pharmacology ; Animals ; Cells, Cultured ; Hippocampus ; cytology ; Isoflavones ; pharmacology ; Neurons ; drug effects ; Pyrazines ; pharmacology ; Rats
3.Osthole suppresses amyloid precursor protein expression by up-regulating miRNA-101a-3p in Alzheimer's disease cell model.
Ying LIN ; Yingjia YAO ; Xicai LIANG ; Yue SHI ; Liang KONG ; Honghe XIAO ; Yutong WU ; Yingnan NI ; Jingxian YANG
Journal of Zhejiang University. Medical sciences 2018;47(5):473-479
OBJECTIVE:
To investigate the effect of osthole on the expression of amyloid precursor protein (APP) in Alzheimer's disease (AD) cell model and its mechanism.
METHODS:
The SH-SY5Y cell with over expression of APP was established by transfection by liposome 2000. The cells were treated with different concentrations of osthole, and the cell viability was determined by MTT and lactate dehydrogenase (LDH) assay. The differentially expressed miRNAs with and without osthole treatment were detected by miRNA array, and the target genes binding to the differentially expressed miRNAs were identified and verified by databases and Cytoscape. After the inhibitor of the differentially expressed miRNA was transduced into cells, the changes of APP and amyloid β (Aβ) protein were determined by immunofluorescence cytochemistry, and the mRNA expression of APP was determined by RT-PCR.
RESULTS:
The AD cell model with over expression of APP was established successfully. The results of MTT and LDH assay showed that osthole had a protective effect on cells and alleviated cell damage. miR-101a-3p was identified as the differentially expressed miRNA, which was binding to the 3'-UTR of APP. Compared with APP group, the expression of APP and Aβ protein and APP mRNA increased in the miR-101a-3p inhibitor group (all <0.01), while the expression of APP and Aβ protein and APP mRNA decreased in the cells with osthole treatment (all <0.01).
CONCLUSIONS
Osthole inhibits the expression of APP by up-regulating miR-101a-3p in AD cell model.
Alzheimer Disease
;
Amyloid beta-Peptides
;
Amyloid beta-Protein Precursor
;
genetics
;
Cell Line
;
Coumarins
;
pharmacology
;
Gene Expression Regulation
;
drug effects
;
genetics
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
4.Resveratrol and Sir2 Reverse Sleep and Memory Defects Induced by Amyloid Precursor Protein.
Yuping HAO ; Lingzhan SHAO ; Jianan HOU ; Yan ZHANG ; Yuqian MA ; Jinhao LIU ; Chuan XU ; Fujun CHEN ; Li-Hui CAO ; Yong PING
Neuroscience Bulletin 2023;39(7):1117-1130
Resveratrol (RES), a natural polyphenolic phytochemical, has been suggested as a putative anti-aging molecule for the prevention and treatment of Alzheimer's disease (AD) by the activation of sirtuin 1 (Sirt1/Sir2). In this study, we tested the effects of RES and Sirt1/Sir2 on sleep and courtship memory in a Drosophila model by overexpression of amyloid precursor protein (APP), whose duplications and mutations cause familial AD. We found a mild but significant transcriptional increase of Drosophila Sir2 (dSir2) by RES supplementation for up to 17 days in APP flies, but not for 7 days. RES and dSir2 almost completely reversed the sleep and memory deficits in APP flies. We further demonstrated that dSir2 acts as a sleep promotor in Drosophila neurons. Interestingly, RES increased sleep in the absence of dSir2 in dSir2-null mutants, and RES further enhanced sleep when dSir2 was either overexpressed or knocked down in APP flies. Finally, we showed that Aβ aggregates in APP flies were reduced by RES and dSir2, probably via inhibiting Drosophila β-secretase (dBACE). Our data suggest that RES rescues the APP-induced behavioral deficits and Aβ burden largely, but not exclusively, via dSir2.
Animals
;
Alzheimer Disease/metabolism*
;
Amyloid beta-Peptides
;
Amyloid beta-Protein Precursor/metabolism*
;
Drosophila/physiology*
;
Drosophila Proteins/metabolism*
;
Resveratrol/pharmacology*
;
Sirtuin 1
;
Sleep
7.Effects of humanin on elevation of intracellular calcium concentration induced by beta-amyloid peptide(31-35) in cultured cortical neurons..
Ling-Min LI ; Jian-Tian QIAO ; Ce ZHANG
Acta Physiologica Sinica 2009;61(2):127-131
The disruption of the intracellular Ca(2+) homeostasis has been reported to be one of the mechanisms of beta-amyloid (Abeta) neurotoxicity in Alzheimeros disease (AD). Abeta(31-35), a small active fragment of Abeta, is believed to possess the similar biological activities of full-length Abeta molecule. Humanin (HN) is a recently identified peptide that suppresses neuronal death initiated by AD-related insults. The present study was to investigate the effects of HN on Abeta(31-35)-induced elevation of [Ca(2+)](i) in cultured cortical neurons by real-time fluorescence imaging technique using the Ca(2+)-sensitive dye, Fura-2/AM. The elevation of [Ca(2+)](i) was observed in cultured neurons exposed to Abeta(31-35) (25 mumol/L) (F340/F380: 1 042.56+/- 83.54, compared with control group: 804.73+/- 48.230, P<0.05, n=10). Pretreatment of HN (10 mumol/L) for 10 min significantly decreased the elevation of [Ca(2+)](i) induced by Abeta(31-35) (25 mumol/L) (F340/F380: 918.788+/- 50.73, compared with Abeta(31-35) group, P<0.05, n=10). When neurons were treated with HN and Abeta(31-35) simultaneously, HN (10 mumol/L) could not change the elevation of [Ca(2+)](i) induced by Abeta(31-35) (F340/F380: 1 036.68+/- 88.96, compared with Abeta(31-35) group, P>0.05, n=10), while HN (20 mumol/L) diminished the elevation of [Ca(2+)](i) induced by Abeta(31-35) (25 mumol/L) significantly (F340/F380: 898.56+/- 76.46, compared with Abeta(31-35) group, P<0.05, n=10). The findings imply that: (1) the disruption of the calcium homeostasis induced by Abeta(31-35) is possibly the basis of the neurotoxicity of Abeta(31-35) in cultured cortical neurons; (2) HN suppresses the elevation of [Ca(2+)](i) induced by Abeta(31-35) in a dose- and time-dependent manner.
Amyloid beta-Peptides
;
pharmacology
;
Calcium
;
metabolism
;
Cell Death
;
Cells, Cultured
;
Homeostasis
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
pharmacology
;
Neurons
;
drug effects
;
Peptide Fragments
;
pharmacology
8.Ginsenoside Rg_1 protects PC12 cells against Aβ-induced injury through promotion of mitophagy by PINK1/parkin activation.
He-Mei LI ; Yi-Xuan JIANG ; Pan-Ling HUANG ; Bo-Cun LI ; Zi-Yu PAN ; Yu-Qing LI ; Xing XIA
China Journal of Chinese Materia Medica 2022;47(2):484-491
Amyloid β-protein(Aβ) deposition in the brain is directly responsible for neuronal mitochondrial damage of Alzheimer's disease(AD) patients. Mitophagy, which removes damaged mitochondria, is a vital mode of neuron protection. Ginsenoside Rg_1(Rg_1), with neuroprotective effect, has displayed promising potential for AD treatment. However, the mechanism underlying the neuroprotective effect of Rg_1 has not been fully elucidated. The present study investigated the effects of ginsenoside Rg_(1 )on the autophagy of PC12 cells injured by Aβ_(25-35) to gain insight into the neuroprotective mechanism of Rg_1. The autophagy inducer rapamycin and the autophagy inhi-bitor chloroquine were used to verify the correlation between the neuroprotective effect of Rg_1 and autophagy. The results showed that Rg_1 enhanced the viability and increased the mitochondrial membrane potential of Aβ-injured PC12 cells, while these changes were blocked by chloroquine. Furthermore, Rg_(1 )treatment increased the LC3Ⅱ/Ⅰ protein ratio, promoted the depletion of p62 protein, up-regulated the protein levels of PINK1 and parkin, and reduced the amount of autophagy adaptor OPTN, which indicated the enhancement of autophagy. After the silencing of PINK1, a key regulatory site of mitophagy, Rg_1 could not increase the expression of PINK1 and parkin or the amount of NDP52, whereas it can still increase the LC3Ⅱ/Ⅰ protein ratio and promote the depletion of OPTN protein which indicated the enhancement of autophagy. Collectively, the results of this study imply that Rg_1 can promote autophagy of PC12 cells injured by Aβ, and may reduce Aβ-induced mitochondrial damage by promoting PINK1-dependent mitophagy, which may be one of the key mechanisms of its neuroprotective effect.
Amyloid beta-Peptides/toxicity*
;
Animals
;
Ginsenosides/pharmacology*
;
Humans
;
Mitophagy/physiology*
;
PC12 Cells
;
Protein Kinases/metabolism*
;
Rats
;
Ubiquitin-Protein Ligases/metabolism*
9.Mechanism of puerarin reversing SH-SY5Y cell injury induced by Aβ_(1-42) based on proteomics.
Lin ZHANG ; De-Yu FANG ; Chun LIU ; Dan-Yu ZHAO ; Yan-Jie WANG ; Wen-Na CHEN ; Yong CUI ; Jun-Fu GUO ; Pei-Wei CONG ; Xiao-Fan FENG ; Yun-Ting ZHANG
China Journal of Chinese Materia Medica 2021;46(14):3650-3659
Puerarin has the anti-Alzheimer's disease (AD) activity,which can reverse nerve injury induced by Aβand inhibit neuronal apoptosis.However,its potential pharmacodynamic mechanism still needs to be further researched.The occurrence and development of AD is due to the change of multiple metabolic links in the body,which leads to the destruction of balance.Puerarin may act on multiple targets and multiple metabolic processes to achieve therapeutic purposes.Quantitative proteomic analysis provides a new choice to understand the mechanism as completely as possible.This research adopted SH-SY5Y cells induced by Aβ_(1-42)to establish AD cell model,and Aβimmunofluorescence detection showed that Aβdecreased significantly after puerarin intervention.The mechanism of puerarin reversing SH-SY5Y cell injured by Aβ_(1-42)was further explored by using label-free non-labeled quantitative technology and Western blot detection based on bioinformatics analysis result.The results showed that most of the differential proteins were related to biological processes such as cellular component organization or biogenesis,cellular component organization and cellular component biogenesis,and they mainly participated in the top ten pathways of P value such as pathogenic Escherichia coli infection,m TOR signaling pathway,regulation of autophagy,regulation of actin cytoskeleton,spliceosome,hepatocellular carcinoma,tight junction,non-small cell lung cancer,apoptosis and gap junction.Annexin V/PI flow cytometry and TUNEL were used to detect apoptosis,and the results showed that Aβdecreased significantly and the rate of apoptosis decreased significantly after puerarin intervention.Western blot analysis found that the protein expression level of autophagy related protein LC3Ⅱwas up-regulated after Aβinduction,and the degree of this up-regulation was further enhanced in puerarin intervention group.The trend of the ratio of LC3Ⅱ/LC3Ⅰamong groups was the same as the protein expression level of LC3Ⅱ,the protein expression level of p62 in the control group,AD model group and puerarin intervention group decreased successively.Protein interaction network analysis showed that CAP1 was correlated with TUBA1B,HSP90AB2P,DNM1L,TUBA1A and ERK1/2,and the correlation between CAP1 and ERK1/2 was the highest among them.Western blot showed that the expressions of p-ERK1/2,Bax and CAP1 were significantly down-regulated and the protein expression level of Bcl-2 was significantly up-regulated after puerarin intervention.Therefore,puerarin might improve the SH-SY5Y cells injured by Aβ_(1-42)through the interaction of multiple biological processes and pathways in cells multiple locations,and CAP1 might play an important role among them.
Amyloid beta-Peptides
;
Apoptosis
;
Carcinoma, Non-Small-Cell Lung
;
Cell Line, Tumor
;
Humans
;
Isoflavones/pharmacology*
;
Lung Neoplasms
;
Proteomics
10.Protective effect of NEP on Abeta-induced apoptosis in PC12 cells.
Ji-Ping ZENG ; Ling-Ling YANG ; Wei-Fang WU ; Feng KONG ; Xiao-Yan HU ; Xing CUI
Chinese Journal of Industrial Hygiene and Occupational Diseases 2007;25(12):722-725
OBJECTIVETo identify the effect of NEP on Abeta -induced apoptosis in PC12 cells.
METHODSPC12 cells that stably express NEP is generated and the effect of NEP on the process of apoptosis induced by Abeta is analyzed, including the viability of the cells, the production of LDH, ROS and ATP, the activity of Caspase-3.
RESULTSNEP could improve the viability of cells and the production of ATP, inhibit the release of LDH and ROS. In the same time, the activity of caspase-3 descended (P < 0.05). But iNEP had not significant effect on cells apoptosis (P > 0.05).
CONCLUSIONNEP has the protective effect on Abeta-induced apoptosis in PC12 cells.
Amyloid beta-Peptides ; pharmacology ; Animals ; Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Endopeptidases ; genetics ; metabolism ; PC12 Cells ; Rats ; Transfection