1.The Expression of Corticotropin-Releasing Factor in the Central Nucleus of the Amygdala, Induced by Colorectal Distension, is Attenuated by General Anesthesia.
Seok Hyeon KIM ; Ji Eun HAN ; Sejin HWANG ; Dong Hoon OH
Journal of Korean Medical Science 2010;25(11):1646-1651
Corticotrophin-releasing factor (CRF), a key regulator of the hypothalamic-pituitary axis, is expressed in the central nucleus of the amygdala (CeA) and its expression is upregulated in stress-related disorders. We investigated here the effect of noxious colorectal distension (CRD) on the expression of CRF in the CeA of conscious and unconscious rats. Adult male rats with or without general anesthesia were exposed to visceral pain induced by CRD for 5 min; this procedure was repeated 3 times with 1 min resting after each distension. The rats were sacrificed and sections of the CeA were immunostained for CRF as an indicator for anxiety response, and for phosphorylated extracellular signal-regulated kinase (p-ERK) as a marker for pain-specific activation of neurons; sections of lumbosacral spinal cord were immunostained for c-Fos as a marker for activation of spinal neurons. CRD elicited a significant increase in the expression of CRF and p-ERK in the CeA and of c-Fos in the spinal cord. General anesthesia attenuated the increase in CRF and p-ERK in the CeA, but did not affect the expression of spinal c-Fos. These results suggest that conscious recognition of pain at higher brain centers is an important determinant of CRF expression in the CeA.
Amygdala/*metabolism/pathology
;
*Anesthesia, General
;
Animals
;
Colon
;
Corticotropin-Releasing Hormone/*metabolism
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
Immunohistochemistry
;
Male
;
Neurons/metabolism
;
Pain/prevention & control
;
Phosphorylation
;
Proto-Oncogene Proteins c-fos/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Rectum
2.Synaptic vesicle protein2A decreases in amygdaloid-kindling pharmcoresistant epileptic rats.
Jing SHI ; Feng ZHOU ; Li-kun WANG ; Guo-feng WU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):716-722
Synaptic vesicle protein 2A (SV2A) involvement has been reported in the animal models of epilepsy and in human intractable epilepsy. The difference between pharmacosensitive epilepsy and pharmacoresistant epilepsy remains poorly understood. The present study aimed to observe the hippocampus SV2A protein expression in amygdale-kindling pharmacoresistant epileptic rats. The pharmacosensitive epileptic rats served as control. Amygdaloid-kindling model of epilepsy was established in 100 healthy adult male Sprague-Dawley rats. The kindled rat model of epilepsy was used to select pharmacoresistance by testing their seizure response to phenytoin and phenobarbital. The selected pharmacoresistant rats were assigned to a pharmacoresistant epileptic group (PRE group). Another 12 pharmacosensitive epileptic rats (PSE group) served as control. Immunohistochemistry, real-time PCR and Western blotting were used to determine SV2A expression in the hippocampus tissue samples from both the PRE and the PSE rats. Immunohistochemistry staining showed that SV2A was mainly accumulated in the cytoplasm of the neurons, as well as along their dendrites throughout all subfields of the hippocampus. Immunoreactive staining level of SV2A-positive cells was 0.483 ± 0.304 in the PRE group and 0.866 ± 0.090 in the PSE group (P < 0.05). Real-time PCR analysis demonstrated that 2(-ΔΔCt) value of SV2A mRNA was 0.30 ± 0.43 in the PRE group and 0.76 ± 0.18 in the PSE group (P < 0.05). Western blotting analysis obtained the similar findings (0.27 ± 0.21 versus 1.12 ± 0.21, P < 0.05). PRE rats displayed a significant decrease of SV2A in the brain. SV2A may be associated with the pathogenesis of intractable epilepsy of the amygdaloid-kindling rats.
Amygdala
;
drug effects
;
metabolism
;
physiopathology
;
Animals
;
Anticonvulsants
;
pharmacology
;
Disease Models, Animal
;
Drug Resistance
;
Electric Stimulation
;
Epilepsy
;
drug therapy
;
genetics
;
metabolism
;
pathology
;
Gene Expression Regulation
;
Hippocampus
;
drug effects
;
metabolism
;
physiopathology
;
Kindling, Neurologic
;
drug effects
;
genetics
;
metabolism
;
pathology
;
Male
;
Membrane Glycoproteins
;
genetics
;
metabolism
;
Nerve Tissue Proteins
;
genetics
;
metabolism
;
Phenobarbital
;
pharmacology
;
Phenytoin
;
pharmacology
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Synaptic Transmission
;
Synaptic Vesicles
;
drug effects
;
metabolism
;
pathology