1.Effect of mufti-gene knockout of L-tryptophan transport system on L-tryptophan production in Escherichia coli.
Zhijun ZHAO ; Sheng CHEN ; Dan WU ; Jing WU ; Jian CHEN
Chinese Journal of Biotechnology 2011;27(12):1765-1772
In Escherichia coli, uptake of L-tryptophan is done by three distinct permeases, encoded by mtr, tnaB, and aroP. Based on the mtr single-gene knockout, we constructed the mtr.tnaB and mtr.aroP double-gene knockout mutants and the mtr.tnaB.aroP triple-gene knockout mutant. The fermentation results showed that the mtr.tnaB and mtr.aroP knockout mutants produced 1.38 g/L and 1.27 g/L L-tryptophan, respectively, which was 17% and 9% higher than that of the mtr knockout mutant. However, the mtr.tnaB.aroP knockout mutant was significantly affected on cell growth and only produced 0.63 g/L L-tryptophan. During the fed-batch fermentation in a 3-L fermentor, the mtr.tnaB knockout mutant produced 12.2 g/L L-tryptophan, which was 27% higher than that of the mtr knockout mutant. This study demonstrates the effect of multi-gene knockouts of L-tryptophan transport system of Escherichia coli on the biosynthesis of L-tryptophan.
Amino Acid Transport Systems
;
genetics
;
Biological Transport
;
Escherichia coli
;
genetics
;
metabolism
;
Escherichia coli Proteins
;
genetics
;
Fermentation
;
Gene Knockout Techniques
;
Membrane Transport Proteins
;
genetics
;
metabolism
;
Mutant Proteins
;
metabolism
;
Tryptophan
;
biosynthesis
;
genetics
;
metabolism
2.Overexpression of Ubiquitin and Amino Acid Permease Genes in Association with Antimony Resistance in Leishmania tropica Field Isolates.
Elham KAZEMI-RAD ; Mehdi MOHEBALI ; Mohammad Bagher KHADEM-ERFAN ; Homa HAJJARAN ; Ramtin HADIGHI ; Ali KHAMESIPOUR ; Sassan REZAIE ; Mojtaba SAFFARI ; Reza RAOOFIAN ; Mansour HEIDARI
The Korean Journal of Parasitology 2013;51(4):413-419
The mainstay therapy against leishmaniasis is still pentavalent antimonial drugs; however, the rate of antimony resistance is increasing in endemic regions such as Iran. Understanding the molecular basis of resistance to antimonials could be helpful to improve treatment strategies. This study aimed to recognize genes involved in antimony resistance of Leishmania tropica field isolates. Sensitive and resistant L. tropica parasites were isolated from anthroponotic cutaneous leishmaniasis patients and drug susceptibility of parasites to meglumine antimoniate (Glucantime(R)) was confirmed using in vitro assay. Then, complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) and real-time reverse transcriptase-PCR (RT-PCR) approaches were utilized on mRNAs from resistant and sensitive L. tropica isolates. We identified 2 known genes, ubiquitin implicated in protein degradation and amino acid permease (AAP3) involved in arginine uptake. Also, we identified 1 gene encoding hypothetical protein. Real-time RT-PCR revealed a significant upregulation of ubiquitin (2.54-fold), and AAP3 (2.86-fold) (P<0.05) in a resistant isolate compared to a sensitive one. Our results suggest that overexpression of ubiquitin and AAP3 could potentially implicated in natural antimony resistance.
Amino Acid Transport Systems/*genetics/metabolism
;
Antimony/*pharmacology
;
Antipruritics/*pharmacology
;
*Drug Resistance
;
Humans
;
Leishmania tropica/drug effects/enzymology/*genetics/isolation & purification
;
Leishmaniasis, Cutaneous/*parasitology
;
Protozoan Proteins/*genetics/metabolism
;
Ubiquitin/*genetics/metabolism
3.Regulation of key enzymes in tryptophan biosynthesis pathway in Escherichia coli.
Jinlong YU ; Jing WANG ; Jianxin LI ; Changjiang GUO ; Yingwu HUANG ; Qishou XU
Chinese Journal of Biotechnology 2008;24(5):844-850
To improve tryptophan production in Escherichia coli, key genes in the tryptophan biosynthesis pathway -aroG, trpED, trpR and tnaA were manipulated. TrpR gene was knocked out to eliminate the repression on the key genes controlling tryptophan biosynthesis and transportation on bacteria chromosome, and the tryptophan degradation was blocked by tnaA gene knockout. Then the bottleneck in tryptophan biosynthesis pathway was removed by co-expressing aroGfbr gene and trpEDfbr gene. Compared with the MG1655, the tryptophan production of trpR knockout and double-genes knockout strains was improved 10-folds and about 20-folds, respectively. After the trpEDfbr was expressed, the tryptophan production increased to 168 mg/L, and when the aroGfbr and trpEDfbr were co-expressed, the tryptophan production increased to 820 mg/L. This work laid the foundation for further construction of higher-efficient engineered strain for tryptophan production.
3-Deoxy-7-Phosphoheptulonate Synthase
;
metabolism
;
Amino Acid Transport Systems
;
genetics
;
Bacterial Proteins
;
genetics
;
Cloning, Molecular
;
Escherichia coli
;
genetics
;
metabolism
;
Escherichia coli Proteins
;
genetics
;
Gene Knockout Techniques
;
Genetic Engineering
;
Repressor Proteins
;
genetics
;
Tryptophan
;
biosynthesis
4.Suppression of amino acid transporter LAT3 expression on proliferation of K562 cells.
Si-Miao XU ; Kun TANG ; Li MENG ; Yi TANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(5):632-635
The activity of the mTOR pathway is frequently increased in acute myeloid leukemia, and is tightly related with cellular proliferation. Leucine is tightly linked to the mTOR pathway and can activate it, thereby stimulating cellular proliferation. LAT3 is a major transporter for leucine, and suppression of its expression can reduce cell proliferation. Here, we show that suppression of LAT3 expression can reduce proliferation of the acute leukemia cell line, K562. We investigated the mRNA and protein expression of LAT3 in several leukemia cell lines and normal peripheral blood mononuclear cells (PBMNCs) using RT-PCR and Western blotting. We also evaluated cell viability using a methyl thiazolyl tetrazolium (MTT) assay after blocking LAT3 expression with either shRNA targeted to LAT3 or a small molecular inhibitor BCH (2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid). LAT3 mRNA and protein expression was detected in leukemia cell lines, but not in normal PBMNCs. Using K562 cells, it was found that cellular proliferation and mTOR pathway activity were significantly reduced when LAT3 was blocked with either shRNA or BCH. Our results suggest that leukemia cell proliferation can be significantly suppressed by blocking LAT3. This finding may lead to a new strategy to develop clinical therapy for the treatment of acute myeloid leukemia.
Amino Acid Transport Systems, Basic
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Amino Acids, Cyclic
;
pharmacology
;
Blotting, Western
;
Cell Line, Tumor
;
Cell Proliferation
;
Cell Survival
;
drug effects
;
genetics
;
Cells, Cultured
;
Dose-Response Relationship, Drug
;
Gene Expression Regulation, Leukemic
;
genetics
;
HL-60 Cells
;
Humans
;
Jurkat Cells
;
K562 Cells
;
Leukemia, Erythroblastic, Acute
;
genetics
;
metabolism
;
pathology
;
Phosphorylation
;
drug effects
;
RNA Interference
;
Reverse Transcriptase Polymerase Chain Reaction
;
TOR Serine-Threonine Kinases
;
metabolism