1.Genetic profiling and intervention strategies for phenylketonuria in Gansu, China: an analysis of 1 159 cases.
Chuan ZHANG ; Pei ZHANG ; Bing-Bo ZHOU ; Xing WANG ; Lei ZHENG ; Xiu-Jing LI ; Jin-Xian GUO ; Pi-Liang CHEN ; Ling HUI ; Zhen-Qiang DA ; You-Sheng YAN
Chinese Journal of Contemporary Pediatrics 2025;27(7):808-814
OBJECTIVES:
To investigate the molecular epidemiology of children with phenylketonuria (PKU) in Gansu, China, providing foundational data for intervention strategies.
METHODS:
A retrospective analysis was conducted on 1 159 PKU families who attended Gansu Provincial Maternity and Child Care Hospital from January 2012 to December 2024. Sanger sequencing, multiplex ligation-dependent probe amplification, whole exome sequencing, and deep intronic variant analysis were used to analyze the <i>PAHi> gene.
RESULTS:
For the 1 159 children with PKU, 2 295 variants were identified in 2 318 alleles, resulting in a detection rate of 99.01%. The detection rates were 100% (914/914) in 457 classic PKU families, 99.45% (907/912) in 456 mild PKU families, and 96.34% (474/492) in 246 mild hyperphenylalaninemia families. The 2 295 variants detected comprised 208 distinct mutation types, among which c.728G>A (14.95%, 343/2 295) had the highest frequency, followed by c.611A>G (4.88%, 112/2 295) and c.721C>T (4.79%, 110/2 295). The cumulative frequency of the top 23 hotspot variants reached 70.28% (1 613/2 295), and most variant alleles were detected in exon 7 (29.19%, 670/2 295).
CONCLUSIONS
Deep intronic variant analysis of the <i>PAHi> gene can improve the genetic diagnostic rate of PKU. The development of targeted detection kits for <i>PAHi> hotspot variants may enable precision screening programs and enhance preventive strategies for PKU.
Humans
;
Phenylketonurias/epidemiology*
;
Female
;
Male
;
Retrospective Studies
;
Phenylalanine Hydroxylase/genetics*
;
Mutation
;
Child, Preschool
;
China/epidemiology*
;
Child
;
Infant
2.Sequential therapy with carglumic acid in three cases of organic acidemia crisis.
Yan-Yan CHEN ; Ting-Ting CHENG ; Jie YAO ; Long-Guang HUANG ; Xiu-Zhen LI ; Wen ZHANG ; Hong LIANG
Chinese Journal of Contemporary Pediatrics 2025;27(7):850-853
Case 1: A 19-day-old male infant presented with poor feeding and decreased activity for 2 weeks, worsening with poor responsiveness for 3 days. At 5 days old, he developed poor feeding and poor responsiveness, was hospitalized, and was found to have elevated blood ammonia and thrombocytopenia. Whole-genome genetic analysis revealed a pathogenic homozygous mutation in the <i>PCCAi> gene, NM-000282.4: c.1834-1835del (p.Arg612AspfsTer44), leading to a diagnosis of propionic acidemia. Case 2: A 4-day-old male infant presented with poor responsiveness and feeding difficulties since birth, with elevated blood ammonia for 1 day. He showed weak sucking and deteriorating responsiveness, with blood ammonia >200 µmol/L. Genetic testing identified two heterozygous mutations in the <i>MMUTi> gene: NM_000255.4: c.1677-1G>A and NM_000255.4: ex.5del, confirming methylmalonic acidemia. Case 3: A 20-day-old male infant presented with poor feeding for 15 days and skin petechiae for 8 days. He developed feeding difficulties at 5 days old and lower limb petechiae at 12 days old, with blood ammonia measured at 551.6 µmol/L. Genetic analysis found two heterozygous mutations in the <i>PCCAi> gene: NM_000282.4: c.1118T>A (p.Met373Lys) and NM_000282.4: ex.16-18del, confirming propionic acidemia. In the first two cases, continuous hemodiafiltration was performed for 30 hours and 20 hours, respectively, before administering carglumic acid. In the third case, carglumic acid was administered orally without continuous hemodiafiltration, resulting in a decrease in blood ammonia from 551.6 µmol/L to 72.0 µmol/L within 6 hours, with a reduction rate of approximately 20-25 µmol/(kg·h), similar to the first two cases. Carglumic acid was effective in all three cases, suggesting it may help optimize future treatment protocols for organic acidemia.
Humans
;
Male
;
Infant, Newborn
;
Propionic Acidemia/drug therapy*
;
Amino Acid Metabolism, Inborn Errors/genetics*
;
Mutation
;
Methylmalonyl-CoA Decarboxylase/genetics*
;
Citrates/administration & dosage*
;
Carbon-Carbon Ligases/genetics*
;
Glutamates
3.Growth assessment in children with phenylketonuria.
Basma Adel IBRAHIM ; Wasnaa Hadi ABDULLAH ; Nabeeha Najatee AKRAM
Chinese Journal of Contemporary Pediatrics 2025;27(8):908-916
OBJECTIVES:
To investigate the growth parameters of children with phenylketonuria and assess the impact of a phenylalanine-restricted diet on their physical development.
METHODS:
The study involved 39 children diagnosed with phenylketonuria through newborn screening at the Central Child Teaching Hospital, Baghdad, Iraq. Data were collected during scheduled monthly check-ups, including phenylalanine levels, diet compliance, and anthropometric measurements. The children were divided into two groups based on their phenylalanine levels during the 3-year follow-up period: well-controlled group (average phenylalanine level of less than 360 μmol/L, with no single reading exceeding 600 μmol/L; <i>ni>=14) and poorly-controlled group (one or more phenylalanine readings above 600 μmol/L during the follow-up period; <i>ni>=25).
RESULTS:
The mean height readings for all time points (at birth and 3, 6, 9, 12, 15, 18, 21, 24 and 36 months of age) were higher in the well-controlled group than the poorly-controlled group, however, only at 3 months of age the difference was statistically significant. Height Z-scores revealed a clearer pattern: although the poorly-controlled group had higher height Z-scores at birth (<i>Pi>=0.001), the well-controlled group showed significantly higher height Z-scores at 3, 6, 12, 15, 18, 24, and 36 months (<i>Pi><0.05). The well-controlled group exhibited significantly higher mean weight measurements compared to the poorly-controlled group at 3, 6, 9, 15, 18 months and 21 months (<i>Pi><0.05). From 6 to 36 months, the well-controlled group consistently had significantly higher weight Z-scores than the poorly-controlled group (<i>Pi><0.05). The well-controlled group showed more favorable height and weight Z-score distributions at 36 months of age compared to the poorly-controlled group, but the differences were not statistically significant (<i>Pi>>0.05). Both groups had height and weight Z-scores within the normal range at 36 months of age.
CONCLUSIONS
The children with phenylketonuria who receive good dietary control show better improvements in growth parameters compared to those with poor dietary control, however, both groups maintain height and weight Z-scores within the normal range, indicating generally adequate physical development across the cohort.
Humans
;
Phenylketonurias/diet therapy*
;
Male
;
Female
;
Child, Preschool
;
Infant
;
Body Height
;
Infant, Newborn
;
Child Development
;
Phenylalanine/blood*
5.Analysis of clinical features, biochemical indices and genetic variants among children with Short/branched-chain acyl-CoA dehydrogenase deficiency detected by neonatal screening.
HanYi ZHAO ; Duo ZHOU ; Haixia MIAO ; Chi CHEN ; Jianbin YANG ; Rulai YANG ; Xinwen HUANG
Chinese Journal of Medical Genetics 2023;40(2):155-160
OBJECTIVE:
To investigate the clinical manifestations, biochemical abnormalities and pathogenic variants among children with Short/branched-chain acyl-CoA dehydrogenase (SBCAD) deficiency detected by neonatal screening.
METHODS:
A total of 2 730 852 newborns were screened from January 2016 to December 2021 with liquid chromatography tandem mass spectrometry. Suspected SBCAD deficiency patients were diagnosed by urine organic acid analysis and high-throughput gene sequencing analysis. The clinical, biochemical and genetic changes of the confirmed cases were analyzed, in addition with guidance for diet and life management, L-carnitine supplement, and survey of growth and intellectual development.
RESULTS:
Twelve cases of SBCAD deficiency were diagnosed, which yielded a prevalence of 1/227 571. The lsovaleryl carnitine (C5) of primary screening blood samples was between 0.6 and 2.1 µmol/L, all exceeded the normal range. C5/acety1 carnitine (C2) was between 0.02 and 0.12, with 6 cases exceeding the normal range. C5/propionyl carnitine (C3) was between 0.1 and 1.16, with 5 cases exceeding the normal range. Free carnitine (C0) was between 18.89 and 58.12 µmol, with 1 case exceeding the normal range. Three neonates with abnormal screening results were recommended to have appropriate restriction for protein intake and two were given L-carnitine. During follow-up, their C5 has ranged from 0.22 to 2.32 µmol/L, C5/C2 has ranged from 0.01 to 0.31, C5/C3 has ranged from 0.14 to 1.7. C5 or C5/C2 and C5/C3 were transiently normal in all patients except for case 8 during the neonatal screening and follow-up. C0 was 17.42 ∼ 76.83 µmol/L Urine organic acid analysis was carried out in 9 of the 12 cases, and 2-methylbutyroglycine was elevated in 8 cases. Urine organic acid analysis was carried out in 9 cases, and 2-methylbutyrylglycine was increased in 8 cases. Genetic analysis was carried out for 11 children, and in total 6 ACADSB gene variants were identified, which included 4 missense variants (c.655G>A, c.923G>A, c.461G>A, c.1165A>G), 1 frameshift variant (c.746del) and 1 nonsense variant (c.275C>G). Among these, the C.461G>A variant was unreported previously. The most common variants were c.1165A>G (40.9%) and C.275C>G (22.7%). The patients were followed up for 18 days to 55 months. Only one patient had mental retardation, with the remainders having normal physical and mental development.
CONCLUSION
SBCAD deficiency is a rare disease. The detection rate of newborn screening in this study was 1/227 571. Early intervention can be attained in most asymptomatic patients through neonatal screening. In this study, the common gene variants are c.1165A>G and c.275C>G.
Humans
;
Infant, Newborn
;
Amino Acid Metabolism, Inborn Errors/genetics*
;
Carnitine
;
Neonatal Screening/methods*
6.Clinical features and genetic analysis of a child with acute form of Tyrosinemia type I due to a novel variant of FAH gene.
Qinghua ZHANG ; Chuan ZHANG ; Yupei WANG ; Weikai WANG ; Ruifeng XU ; Ling HUI ; Xuan FENG ; Xing WANG ; Lei ZHENG ; Binbo ZHOU ; Yan JIANG ; Shengju HAO
Chinese Journal of Medical Genetics 2023;40(2):171-176
OBJECTIVE:
To analyze the clinical phenotype and genetic basis for a child with acute form of tyrosinemia type I (TYRSN1).
METHODS:
A child with TYRSN1 who presented at the Gansu Provincial Maternal and Child Health Care Hospital in October 2020 was selected as the subject. The child was subjected to tandem mass spectrometry (MS-MS) and urine gas chromatography-mass spectrometry (GC-MS) for the detection of inherited metabolic disorders, in addition with whole exome sequencing (WES). Candidate variants were validated by Sanger sequencing.
RESULTS:
The child's clinical features included abdominal distension, hepatomegaly, anemia and tendency of bleeding. By mass spectrometry analysis, her serum and urine tyrosine and succinylacetone levels have both exceeded the normal ranges. WES and Sanger sequencing revealed that she has harbored c.1062+5G>A and c.943T>C (p.Cys315Arg) compound heterozygous variants of the FAH gene, which were inherited from her father and mother, respectively. Among these, the c.943T>C was unreported previously.
CONCLUSION
Considering her clinical phenotype and result of genetic testing, the child was diagnosed with TYRSN1 (acute type). The compound heterozygous variants of the FAH gene probably underlay the disease in this child. Above finding has further expanded the spectrum of FAH gene variants, and provided a basis for accurate treatment, genetic counseling and prenatal diagnosis for her family.
Female
;
Humans
;
Gas Chromatography-Mass Spectrometry
;
Genetic Testing
;
Mutation
;
Phenotype
;
Prenatal Diagnosis
;
Tyrosinemias/genetics*
;
Child
7.Analysis of SUOX gene variants and clinical features in a child with Isolated sulfite oxidase deficiency.
Chinese Journal of Medical Genetics 2023;40(2):177-180
OBJECTIVE:
To explore the clinical features and genetic basis for a child with early-onset Isolated sulfite oxidase deficiency (ISOD).
METHODS:
A child with ISOD who was admitted to Weihai Hospital Affiliated to Qingdao University on May 10, 2020 was selected as the study subject. Clinical data of the child was analyzed. The child and her parents were subjected to trio-whole exome sequencing, and candidate variants were verified by Sanger sequencing.
RESULTS:
The female neonate was transferred to the intensive care unit due to "secondary pollution of amniotic fluid and laborious breathing for 11 minutes", and had developed frequent convulsions. Genetic testing revealed that she has harbored c.1200C>G and c.188G>A compound heterozygous variants of the SUOX gene, which were inherited from her mother and father, respectively. The c.1200C>G has been described previously and was rated as pathogenic based on guidelines from the American College of Medical Genetics and Genomics, whilst the c.188G>A variant was unreported previously and rated as variant of unknown significance.
CONCLUSION
The compound heterozygous variants of the SUOX gene probably underlay the ISOD in this child. Above finding has enriched the spectrum of SUOX gene variants and provided a basis for the clinical diagnosis and genetic counseling.
Female
;
Humans
;
Infant, Newborn
;
Amino Acid Metabolism, Inborn Errors/diagnosis*
;
Genetic Counseling
;
Genetic Testing
;
Mutation
;
Oxidoreductases Acting on Sulfur Group Donors/genetics*
;
Sulfite Oxidase/genetics*
8.Analysis of OTC gene variants in four children with delayed onset Ornithine transcarbamylase deficiency.
Lei XIE ; Yao WANG ; Wei MA ; Xiaolei FAN ; Lulu PANG ; Erhu WEI ; Huaili WANG
Chinese Journal of Medical Genetics 2023;40(3):328-331
OBJECTIVE:
To analyze the clinical manifestation and genetic basis for four children with delayed onset Ornithine transcarbamylase deficiency (OTCD).
METHODS:
Clinical data of four children with OTCD admitted to the Children's Hospital of the First Affiliated Hospital of Zhengzhou University from January 2020 to April 2021 were reviewed. Peripheral blood samples of the children and their parents were collected and subjected to whole exome sequencing (WES). Bioinformatic analysis and Sanger sequencing verification were carried out to verify the candidate variants. Impact of the candidate variants on the protein structure was also predicted.
RESULTS:
The clinical manifestations of the four children included vomiting, convulsion and disturbance of consciousness. WES revealed that the child 1 was heterozygous for a c.421C>T (p.R141X) variant in exon 5, children 2 and 3 were hemizygous for a c.119G>A (p.R40H) variant in exon 2, and child 4 was hemizygous for a c.607T>A (p.S203T) variant in exon 5 of the OTC gene. Among these, the c.607T>A variant was unreported previously and predicted to be pathogenic (PM1+PM2_Supporting+PP3+PP4). Bioinformatic analysis has predicted that the variant may result in breakage of hydrogen bonds and alter the protein structure and function. Sanger sequencing confirmed that the variants in children 2 to 4 have derived from their mothers.
CONCLUSION
The pathogenic variants of the OTC gene probably underlay the delayed OTCD in 4 children. The discovery of the c.607T>A variant has enriched the mutational spectrum of the OTC gene.
Child
;
Humans
;
Ornithine Carbamoyltransferase Deficiency Disease/genetics*
;
Exons
;
Seizures
;
Computational Biology
;
Heterozygote
10.Treatment and management for children with urea cycle disorder in chronic stage.
Journal of Zhejiang University. Medical sciences 2023;52(6):744-750
Urea cycle disorder (UCD) is a group of inherited metabolic diseases with high disability or fatality rate, which need long-term drug treatment and diet management. Except those with Citrin deficiency or liver transplantation, all pediatric patients require lifelong low protein diet with safe levels of protein intake and adequate energy and lipids supply for their corresponding age; supplementing essential amino acids and protein-free milk are also needed if necessary. The drugs for long-term use include nitrogen scavengers (sodium benzoate, sodium phenylbutyrate, glycerol phenylbutyrate), urea cycle activation/substrate supplementation agents (<i>Ni>-carbamylglutamate, arginine, citrulline), etc. Liver transplantation is recommended for pediatric patients not responding to standard diet and drug treatment, and those with severe progressive liver disease and/or recurrent metabolic decompensations. Gene therapy, stem cell therapy, enzyme therapy and other novel technologies may offer options for treatment in UCD patients. The regular biochemical assessments like blood ammonia, liver function and plasma amino acid profile are needed, and physical growth, intellectual development, nutritional intake should be also evaluated for adjusting treatment in time.
Humans
;
Child
;
Citrullinemia/drug therapy*
;
Urea Cycle Disorders, Inborn/therapy*
;
Arginine
;
Sodium Benzoate/therapeutic use*
;
Liver Transplantation

Result Analysis
Print
Save
E-mail