1.Flexural strengths of implant-supported zirconia based bridges in posterior regions.
Mansour RISMANCHIAN ; Soufia SHAFIEI ; Farzaneh NOURBAKHSHIAN ; Amin DAVOUDI
The Journal of Advanced Prosthodontics 2014;6(5):346-350
PURPOSE: Impact forces in implant supported FDP (fixed dental prosthesis) are higher than that of tooth supported FDPs and the compositions used in frameworks also has a paramount role for biomechanical reasons. The aim of this study was to evaluate the flexural strength of two different zirconia frameworks. MATERIALS AND METHODS: Two implant abutments with 3.8 mm and 4.5 mm platform were used as premolar and molar. They were mounted vertically in an acrylic resin block. A model with steel retainers and removable abutments was fabricated by milling machine; and 10 FDP frameworks were fabricated for each Biodenta and Cercon systems. All samples were thermo-cycled for 2000 times in 5-55degrees C temperature and embedded in 37degrees C artificial saliva for one week. The flexural test was done by a rod with 2 mm ending diameter which was applied to the multi-electromechanical machine. The force was inserted until observing fracture. The collected data were analyzed with SPSS software ver.15, using Weibull modulus and independent t-test with the level of significance at alpha=.05. RESULTS: The mean load bearing capacity values were higher in Biodenta but with no significant differences (P>.05). The Biodenta frameworks showed higher load bearing capacity (F0=1700) than Cercon frameworks (F0=1520) but the reliability (m) was higher in Cercon (m=7.5). CONCLUSION: There was no significant difference between flexural strengths of both zirconia based framework systems; and both Biodenta and Cercon systems are capable to withstand biting force (even parafunctions) in posterior implant-supported bridges with no significant differences.
Bicuspid
;
Molar
;
Saliva, Artificial
;
Steel
;
Tooth
;
Weight-Bearing