1.Artificial intelligence for endoscopy in inflammatory bowel disease
Kento TAKENAKA ; Ami KAWAMOTO ; Ryuichi OKAMOTO ; Mamoru WATANABE ; Kazuo OHTSUKA
Intestinal Research 2022;20(2):165-170
Inflammatory bowel disease (IBD), with its 2 subtypes, Crohn’s disease and ulcerative colitis, is a complex chronic condition. A precise definition of disease activity and appropriate drug management greatly improve the clinical course while minimizing the risk or cost. Artificial intelligence (AI) has been used in several medical diseases or situations. Herein, we provide an overview of AI for endoscopy in IBD. We discuss how AI can improve clinical practice and how some components have already begun to shape our knowledge. There may be a time when we can use AI in clinical practice. As AI systems contribute to the exact diagnosis and treatment of human disease, we should continue to learn best practices in health care in the field of IBD.
2.Combination of leucine-rich alpha-2 glycoprotein and fecal markers detect Crohn’s disease activity confirmed by balloon-assisted enteroscopy
Ami KAWAMOTO ; Kento TAKENAKA ; Shuji HIBIYA ; Yoshio KITAZUME ; Hiromichi SHIMIZU ; Toshimitsu FUJII ; Eiko SAITO ; Kazuo OHTSUKA ; Ryuichi OKAMOTO
Intestinal Research 2024;22(1):65-74
Background/Aims:
Endoscopic activity confirmed by enteroscopy is associated with poor clinical outcome in Crohn’s disease (CD). We investigated which of the existing biomarkers best reflects endoscopic activity in CD patients including the small bowel, and whether their combined use can improve accuracy.
Methods:
One hundred and four consecutive patients with ileal and ileocolonic type CD who underwent balloon-assisted enteroscopy (BAE) from October 2021 to August 2022 were enrolled, with clinical and laboratory data prospectively collected and analyzed.
Results:
Hemoglobin, platelet count, C-reactive protein, leucine-rich alpha-2 glycoprotein (LRG), fecal calprotectin, and fecal hemoglobin all showed significant difference in those with ulcers found on BAE. LRG and fecal calprotectin showed the highest areas under the curve (0.841 and 0.853) for detecting ulcers. LRG showed a sensitivity of 78% and specificity of 80% at a cutoff value of 13 μg/mL, whereas fecal calprotectin showed a sensitivity of 91% and specificity of 67% at a cutoff value of 151 μg/g. Dual positivity for LRG and fecal calprotectin, as well as LRG and fecal hemoglobin, both predicted ulcers with an improved specificity of 92% and 100%. A positive LRG or fecal calprotectin/hemoglobin showed an improved sensitivity of 96% and 91%. Positivity for LRG and either of the fecal biomarkers was associated with increased risk of hospitalization, surgery, and relapse.
Conclusions
The biomarkers LRG, fecal calprotectin, and fecal hemoglobin can serve as noninvasive and accurate tools for assessing activity in CD patients confirmed by BAE, especially when used in combination.
3.Long-term efficacy and safety of tofacitinib in patients with ulcerative colitis: 3-year results from a real-world study
Hiromichi SHIMIZU ; Yuko AONUMA ; Shuji HIBIYA ; Ami KAWAMOTO ; Kento TAKENAKA ; Toshimitsu FUJII ; Eiko SAITO ; Masakazu NAGAHORI ; Kazuo OHTSUKA ; Ryuichi OKAMOTO
Intestinal Research 2024;22(3):369-377
Background/Aims:
The efficacy and safety of tofacitinib for the treatment of refractory ulcerative colitis (UC) has been demonstrated in clinical trials. Although, a series of reports with real-world evidence of its short-term efficacy and safety profiles have already been published, reports of long-term real-world data have been limited. We aimed to show our 3-year evidence on the clinical use of tofacitinib for the treatment of UC, focusing on its efficacy and safety profiles.
Methods:
A retrospective observational study was conducted on patients who started tofacitinib for active refractory UC at our hospital. The primary outcome was the retention rate until 156 weeks after initiating tofacitinib. The secondary outcomes were short-term efficacy at 4, 8, and 12 weeks; long-term efficacy at 52, 104, and 156 weeks; prognostic factors related to the cumulative retention rate; loss of response; and safety profile, including adverse events.
Results:
Forty-six patients who were able to be monitored for up to 156 weeks after tofacitinib initiation, were enrolled in this study. Continuation of tofacitinib was possible until 156 weeks in 54.3%, with > 50% response rates and > 40% remission rates. Among patients in whom response or remission was achieved and tofacitinib was deescalated after 8 weeks of induction treatment, 54.3% experienced relapse but were successfully rescued by and retained on reinduction treatment, except for 1 patient. No serious AEs were observed in the study.
Conclusions
Tofacitinib is effective and safe as long-term treatment in a refractory cohort of UC patients in real-world clinical practice.