1.Feline Interstitial Cystitis Enhances Mucosa-Dependent Contractile Responses to Serotonin.
Youko IKEDA ; Amanda WOLF-JOHNSTON ; James R ROPPOLO ; Charles A T BUFFINGTON ; Lori BIRDER
International Neurourology Journal 2018;22(4):246-251
PURPOSE: To determine whether responses to serotonin are altered in bladder strips from cats diagnosed with a naturally occurring form of bladder pain syndrome/interstitial cystitis termed feline interstitial cystitis (FIC). METHODS: Full thickness bladder strips were isolated from aged matched healthy control cats and cats with clinically verified FIC. Bladder strips were mounted in an organ bath and connected to a tension transducer to record contractile activity. A serotonin dose response (0.01–10μM) was determined for each strip with the mucosa intact or denuded. RESULTS: Bladder strips from control and FIC cats contracted in response to serotonin in a dose-dependent manner. The normalized force of serotonin-evoked contractions was significantly greater in bladder strips from cats with FIC (n=7) than from control cats (n=4). Removal of the mucosa significantly decreased serotonin-mediated responses in both control and FIC bladder preparations. Furthermore, the contractions in response to serotonin were abolished by 1μM atropine in both control and FIC bladder strips. CONCLUSIONS: The effect of serotonin on contractile force, but not sensitivity, was potentiated in bladder strips from cats with FIC, and was dependent upon the presence of the mucosa in control and FIC groups. As atropine inhibited these effects of serotonin, we hypothesize that, serotonin enhances acetylcholine release from the mucosa of FIC cat bladder strips, which could account for the increased force generated. In summary, FIC augments the responsiveness of bladder to serotonin, which may contribute to the symptoms associated with this chronic condition.
Acetylcholine
;
Animals
;
Atropine
;
Baths
;
Cats
;
Cystitis
;
Cystitis, Interstitial*
;
Mucous Membrane
;
Serotonin*
;
Transducers
;
Urinary Bladder
;
Urothelium
2.Aging-Associated Changes in Oxidative Stress Negatively Impacts the Urinary Bladder Urothelium
Mathijs M. DE RIJK ; Amanda WOLF-JOHNSTON ; Aura F. KULLMANN ; Stephanie TAICLET ; Anthony J. KANAI ; Sruti SHIVA ; Lori A. BIRDER
International Neurourology Journal 2022;26(2):111-118
Purpose:
Lower urinary tract symptoms are known to significantly increase with age, negatively impacting quality of life and self-reliance. The urothelium fulfills crucial tasks, serving as a barrier protecting the underlying bladder tissue from the harsh chemical composition of urine, and exhibits signaling properties via the release of mediators within the bladder wall that affect bladder functioning. Aging is associated with detrimental changes in cellular health, in part by increasing oxidative stress in the bladder mucosa, and more specifically the urothelium. This, in turn, may impact urothelial mitochondrial health and bioenergetics.
Methods:
We collected mucosal tissue samples from both young (3–4 months old) and aged (25–30 months old) rats. Tissue was evaluated for p21-Arc, nitrotyrosine, and cytochrome C expression by western immunoblotting. Urothelial cells were cultured for single-cell imaging to analyze basal levels of reactive oxygen species and the mitochondrial membrane potential. Mitochondrial bioenergetics and cellular respiration were investigated by the Seahorse assay, and measurements of adenosine triphosphate release were made using the luciferin-luciferase assay.
Results:
Aging was associated with a significant increase in biomarkers of cellular senescence, oxidative stress, and basal levels of reactive oxygen species. The mitochondrial membrane potential was significantly lower in urothelial cell cultures from aged animals, and cultures from aged animals showed a significant decrease in mitochondrial bioenergetics.
Conclusions
Aging-related increases in oxidative stress and excessive reactive oxygen species may be contributing factors underlying lower urinary tract symptoms in older adults. The mechanisms outlined in this study could be utilized to identify novel pharmaceutical targets to improve aging-associated bladder dysfunction.
3.Stress-Induced Changes in Trophic Factor Expression in the Rodent Urinary Bladder: Possible Links With Angiogenesis
Mathijs M. de RIJK ; Amanda WOLF-JOHNSTON ; Aura F. KULLMANN ; Katherine MARINGER ; Sunder SIMS-LUCAS ; Gommert A. van KOEVERINGE ; Larissa V. RODRÍGUEZ ; Lori A. BIRDER
International Neurourology Journal 2022;26(4):299-307
Purpose:
Substantive evidence supports a role of chronic stress in the development, maintenance, and even enhancement of functional bladder disorders such as interstitial cystitis/bladder pain syndrome (IC/BPS). Increased urinary frequency and bladder hyperalgesia have been reported in rodents exposed to a chronic stress paradigm. Here, we utilized a water avoidance stress (WAS) model in rodents to investigate the effect of chronic stress on vascular perfusion and angiogenesis.
Methods:
Female Wistar-Kyoto rats were exposed to WAS for 10 consecutive days. Bladder neck tissues were analyzed by western immunoblot for vascular endothelial growth factor (VEGF) and nerve growth factor precursor (proNGF). Vascular perfusion was assessed by fluorescent microangiography followed by Hypoxyprobe testing to identify regions of tissue hypoxia.
Results:
The expression of VEGF and proNGF in the bladder neck mucosa was significantly higher in the WAS rats than in the controls. There was a trend toward increased vascular perfusion, but without a statistically significant difference from the control group. The WAS rats displayed a 1.6-fold increase in perfusion. Additionally, a greater abundance of vessels was observed in the WAS rats, most notably in the microvasculature.
Conclusions
These findings show that chronic psychological stress induces factors that can lead to increased microvasculature formation, especially around the bladder neck, the region that contains most nociceptive bladder afferents. These findings may indicate a link between angiogenesis and other inflammatory factors that contribute to structural changes and pain in IC/BPS.
4.Quantification of Aging-Related Decreases in Sensory Innervation of the Bladder Trigone in Rats
Mathijs M. de RIJK ; Saša PETER ; Amanda WOLF-JOHNSTON ; John HEESAKKERS ; Gommert A. van KOEVERINGE ; Lori A. BIRDER
International Neurourology Journal 2024;28(Suppl 1):40-45
Purpose:
The prevalence of lower urinary tract symptoms (LUTS), characterized by problems regarding storage and/or voiding of urine, is known to significantly increase with age. Effective communication between the lower urinary tract and the central nervous system (CNS) is essential for the optimal function of this system, and heavily relies on the efficient interaction between the bladder urothelium and the afferent nerve fibers situated in close proximity to the urothelium within the lamina propria.
Methods:
We aimed to quantify aging-related differences in the expression of calcitonin gene-related peptide (CGRP, an established marker for sensory nerve fibers) in the trigonal mucosal layers of young (3–4 months) and aged (25–30 months) rats. We evaluated trigonal tissue from 3 animals per age group. Tissue was serially sectioned at 10 μm and stained for CGRP. Images were taken along the full length of the tissue. For each image we computed the total CGRP-positive area (μm2) and the median value for each animal was used for further analysis.
Results:
Upon statistical analysis the aged rats show a significantly lower CGRP-positive area compared to young rats (P=0.0049). These results indicate that aging has a negative effect on the area of CGRP-positive signal in the trigone.
Conclusions
The structural and functional integrity of the sensory web in the trigonum of rats is negatively affected by the aging process, potentially leading to impaired communication between the bladder urothelium the CNS. Consequently, these perturbations in the sensory system may contribute to the pathogenesis or exacerbation LUTS.