1.Factors Influencing Alzheimer's Disease Risk: Whether and How They are Related to the APOE Genotype.
Rong ZHANG ; Xiaojiao XU ; Hang YU ; Xiaolan XU ; Manli WANG ; Weidong LE
Neuroscience Bulletin 2022;38(7):809-819
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease featuring progressive cognitive impairment. Although the etiology of late-onset AD remains unclear, the close association of AD with apolipoprotein E (APOE), a gene that mainly regulates lipid metabolism, has been firmly established and may shed light on the exploration of AD pathogenesis and therapy. However, various confounding factors interfere with the APOE-related AD risk, raising questions about our comprehension of the clinical findings concerning APOE. In this review, we summarize the most debated factors interacting with the APOE genotype and AD pathogenesis, depict the extent to which these factors relate to APOE-dependent AD risk, and discuss the possible underlying mechanisms.
Alzheimer Disease/pathology*
;
Apolipoprotein E4/genetics*
;
Apolipoproteins E/genetics*
;
Genotype
;
Humans
;
Lipid Metabolism
;
Neurodegenerative Diseases
;
Risk Factors
2.Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery.
Jiho JANG ; Jeong Eun YOO ; Jeong Ah LEE ; Dongjin R LEE ; Ji Young KIM ; Yong Jun HUH ; Dae Sung KIM ; Chul Yong PARK ; Dong Youn HWANG ; Han Soo KIM ; Hoon Chul KANG ; Dong Wook KIM
Experimental & Molecular Medicine 2012;44(3):202-213
The generation of disease-specific induced pluripotent stem cell (iPSC) lines from patients with incurable diseases is a promising approach for studying disease mechanisms and drug screening. Such innovation enables to obtain autologous cell sources in regenerative medicine. Herein, we report the generation and characterization of iPSCs from fibroblasts of patients with sporadic or familial diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), juvenile-onset, type I diabetes mellitus (JDM), and Duchenne type muscular dystrophy (DMD), as well as from normal human fibroblasts (WT). As an example to modeling disease using disease-specific iPSCs, we also discuss the previously established childhood cerebral adrenoleukodystrophy (CCALD)- and adrenomyeloneuropathy (AMN)-iPSCs by our group. Through DNA fingerprinting analysis, the origins of generated disease-specific iPSC lines were identified. Each iPSC line exhibited an intense alkaline phosphatase activity, expression of pluripotent markers, and the potential to differentiate into all three embryonic germ layers: the ectoderm, endoderm, and mesoderm. Expression of endogenous pluripotent markers and downregulation of retrovirus-delivered transgenes [OCT4 (POU5F1), SOX2, KLF4, and c-MYC] were observed in the generated iPSCs. Collectively, our results demonstrated that disease-specific iPSC lines characteristically resembled hESC lines. Furthermore, we were able to differentiate PD-iPSCs, one of the disease-specific-iPSC lines we generated, into dopaminergic (DA) neurons, the cell type mostly affected by PD. These PD-specific DA neurons along with other examples of cell models derived from disease-specific iPSCs would provide a powerful platform for examining the pathophysiology of relevant diseases at the cellular and molecular levels and for developing new drugs and therapeutic regimens.
Alzheimer Disease/genetics/*pathology
;
Cell Differentiation
;
Cells, Cultured
;
Diabetes Mellitus, Type 1/genetics/*pathology
;
Drug Discovery/*methods
;
Fibroblasts/cytology/metabolism/pathology
;
Gene Expression
;
Humans
;
Induced Pluripotent Stem Cells/cytology/metabolism/*pathology
;
Muscular Dystrophy, Duchenne/genetics/*pathology
;
Parkinson Disease/genetics/*pathology
3.Analysis of differential plaque depositions in the brains of Tg2576 and Tg-APPswe/PS1dE9 transgenic mouse models of Alzheimer disease.
Tae Kyung KIM ; Jung Eun LEE ; Sun Kyu PARK ; Kang Woo LEE ; Ji Seon SEO ; Joo Young IM ; Sang Tae KIM ; Joo Yong LEE ; Yang Hee KIM ; Ja Kyeong LEE ; Pyung Lim HAN
Experimental & Molecular Medicine 2012;44(8):492-502
Adequate assessment of plaque deposition levels in the brain of mouse models of Alzheimer disease (AD) is required in many core issues of studies on AD, including studies on the mechanisms underlying plaque pathogenesis, identification of cellular factors modifying plaque pathology, and developments of anti-AD drugs. The present study was undertaken to quantitatively evaluate plaque deposition patterns in the brains of the two popular AD models, Tg2576 and Tg-APPswe/PS1dE9 mice. Coronally-cut brain sections of Tg2576 and Tg-APPswe/PS1dE9 mice were prepared and plaque depositions were visualized by staining with anti-amyloid beta peptides antibody. Microscopic images of plaque depositions in the prefrontal cortex, parietal cortex, piriform cortex and hippocampus were obtained and the number of plaques in each region was determined by a computer-aided image analysis method. A series of optical images representing a gradual increase of plaque deposition levels were selected in the four different brain regions and were assigned in each with a numerical grade of 1-6, where +1 was lowest and +6, highest, so that plaques per unit in mm2 increased "sigmoidally" over the grading scales. Analyzing plaque depositions using the photographic plaque reference panels and a computer-aid image analysis method, it was demonstrated that the brains of Tg2576 mice started to accumulate predominantly small plaques, while the brains of Tg-APPswe/PS1dE9 mice deposited relatively large plaques.
Alzheimer Disease/genetics/*pathology
;
Amyloid beta-Protein Precursor/genetics/metabolism
;
Animals
;
Disease Models, Animal
;
Humans
;
Mice
;
Mice, Transgenic
;
Plaque, Amyloid/*pathology
4.Generation of Tau/App/PS1 triple-transgenic mouse model and the study of its biological characteristics.
Li-Li WANG ; Xin NA ; Xiao-Nan ZHU ; Ru-Zhu CHEN ; Hai WANG ; Xue-Lan WANG
Chinese Journal of Applied Physiology 2012;28(4):294-297
OBJECTIVETo establish the triple-transgenic mouse model and study their biological characteristics by molecular biology, behavior and pathology.
METHODSHybrid the Tau and amyloid precursor protein (APP)/presenilins (PS1) transgenic mouse, the genotype of offspring mice were identified by PCR. Transcribed target genes were detected by RT-PCR. The protein expression of exogenous genes was detected by Western-blot. The pathological change of neurofibrillary tangles and senile plaque were observed by Bielschowsky silver staining and ABC immunohistochemical method. The changes time of learning and memory were observed by Morris water maze.
RESULTSAPP, PS1 and Tau genes were transcript in Tau/APP/PS1 mice. In 6 to 8 months old Tau/APP/PS1 mice, the neurofibrillary tangles and senile plaque could be found in cortex and hippocampus. In 6 months old Tau/APP/PS1 mice, the learning and memory abilities were worse.
CONCLUSIONWith the behavior change and pathological changes in Tau and beta-amyloid protein (AP), the Tau/APP/PS1 triple-transgenic mice can be used as a further study animal model of AD's pathogenesis and the target of drug treatment.
Alzheimer Disease ; pathology ; Amyloid beta-Protein Precursor ; genetics ; Animals ; Brain ; pathology ; Disease Models, Animal ; Learning ; Male ; Memory ; Mice ; Mice, Transgenic ; Neurofibrillary Tangles ; pathology ; Plaque, Amyloid ; pathology ; Presenilin-1 ; genetics ; tau Proteins ; genetics
5.Review of neuropathology in the past 10 years in China.
Chinese Journal of Pathology 2005;34(9):550-552
6.Effects of TYROBP Deficiency on Neuroinflammation of a Alzheimer's Disease Mouse Model Carrying a PSEN1 p.G378E Mutation.
Li RAN ; Lv ZHAN-YUN ; Li YAN-XIN ; Li WEI ; Hao YAN-LEI
Chinese Medical Sciences Journal 2022;37(4):320-330
Objective To study the effects of TYRO protein kinase-binding protein (TYROBP) deficiency on learning behavior, glia activation and pro-inflammatory cycokines, and Tau phosphorylation of a new Alzheimer's disease (AD) mouse model carrying a PSEN1 p.G378E mutation.Methods A new AD mouse model carrying PSEN1 p.G378E mutation was built based on our previously found AD family which might be ascribed to the PSEN1 mutation, and then crossed with TYROBP deficient mice to produce the heterozygous hybrid mice (PSEN1G378E/WT; Tyrobp+/-) and the homozygous hybrid mice (PSEN1G378E/G378E; Tyrobp-/-). Water maze test was used to detect spatial learning and memory ability of mice. After the mice were sacrificed, the hippocampus was excised for further analysis. Immunofluorescence was used to identify the cell that expresses TYROBP and the number of microglia and astrocyte. Western blot was used to detect the expression levels of Tau and phosphorylated Tau (p-Tau), and ELISA to measure the levels of pro-inflammatory cytokines. Results Our results showed that TYROBP specifically expressed in the microglia of mouse hippocampus. Absence of TYROBP in PSEN1G378E mutation mouse model prevented the deterioration of learning behavior, decreased the numbers of microglia and astrocytes, and the levels of interleukin-6, interleukin-1β and tumor necrosis factor-α in the hippocampus (all P < 0.05). The ratios of AT8/Tau5, PHF1/Tau5, pT181/Tau5, pT231/Tau5 and p-ERK/ERK were all higher in homozygous hybrid mice (PSEN1G378E/G378E; Tyrobp-/- mice) compared with PSEN1G378E/G378E mice (all P < 0.05). Conclusions TYROBP deficiency might play a protective role in the modulation of neuroinflammation of AD. However, the relationship between neuroinflammation processes involving microglia and astrocyte activation, and release of pro-inflammatory cytokines, and p-Tau pathology needs further study.
Mice
;
Animals
;
Alzheimer Disease/genetics*
;
Neuroinflammatory Diseases
;
Hippocampus/pathology*
;
Mutation
;
Cytokines/pharmacology*
;
Disease Models, Animal
;
tau Proteins/pharmacology*
;
Amyloid beta-Peptides/metabolism*
;
Adaptor Proteins, Signal Transducing/pharmacology*
7.Cholesterol metabolism and homeostasis in the brain.
Protein & Cell 2015;6(4):254-264
Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to blood-brain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and some cognitive deficits typical of the old age. The brain contains large amount of cholesterol, but the cholesterol metabolism and its complex homeostasis regulation are currently poorly understood. This review will seek to integrate current knowledge about the brain cholesterol metabolism with molecular mechanisms.
ATP-Binding Cassette Transporters
;
genetics
;
metabolism
;
Alzheimer Disease
;
genetics
;
metabolism
;
pathology
;
Blood-Brain Barrier
;
Brain
;
metabolism
;
pathology
;
Cholesterol
;
metabolism
;
Gene Expression Regulation
;
Homeostasis
;
Humans
;
Huntington Disease
;
genetics
;
metabolism
;
pathology
;
Hydroxycholesterols
;
metabolism
;
Lipid Metabolism
;
genetics
;
Neurons
;
metabolism
;
pathology
;
Parkinson Disease
;
genetics
;
metabolism
;
pathology
;
Receptors, Lipoprotein
;
genetics
;
metabolism
8.Reproduction,genotype identification and evaluation of APP/PS1 transgenic mice.
Long TAN ; Hai-Qiang LI ; Yi-Bo LI ; Wei LIU ; Wei PANG ; Yu-Gang JIANG
Chinese Journal of Applied Physiology 2018;34(2):111-114
OBJECTIVES:
To identify the genotype of (APP/PS1) transgenic mice and evaluate the changing of cognitive and behavioral fu nctions, provide an effective animal model for the Alzheimer's disease (AD) research.
METHODS:
Male APP/PS1 transgenic mice mated with female APP/PS1 transgenic mice, and the genotype of their filial mice was identified by PCR. The APP +/PS1 + mice were assigned into AD model group (AD group, =8), and the APP/PS1 mice were assigned into control group (CT group, =8). The Morris water maze test was carried out to detect the capacity of learning and memory of mice. After that, the mice were sacrificed and the brain tissues were sampled and stained by HE and congo red for the pathological examination.
RESULTS:
①A APP/PS1 genome DNA about 360 bp size was detected. The methods of feeding and breeding were successful to attain APP/PS1 transgenic mice.②Statistical significance was found in the differences of the capacity of learning and memory between 7-month-old APP/PS1 positive mice and negative mice (<0.05).③The results of HE stain showed that the structure and cellular morphology of hippocampus of AD mice were obviously abnormal. The results of congo red stain showed that positive amyloid plaque was observed in brains of AD mice.
CONCLUSIONS
APP/PS1 transgenic mice present typical symptoms and behaviors of Alzheimer's disease. The transgenic mouse is an effective tool for the research and prevention of AD.
Alzheimer Disease
;
physiopathology
;
Amyloid beta-Protein Precursor
;
genetics
;
Animals
;
Disease Models, Animal
;
Female
;
Genotype
;
Hippocampus
;
pathology
;
Male
;
Maze Learning
;
Mice
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Plaque, Amyloid
;
pathology
;
Presenilin-1
;
genetics
9.Advances in molecular biology and clinical study of amyloid precursor protein for Alzheimer's disease.
Acta Academiae Medicinae Sinicae 2004;26(2):201-209
Alzheimer's disease (AD) is the most common cause of dementia in elderly population. There are two hallmark pathological lesions: the intracellular neurofibrillary tangles (NFTs) and the extracellular amyloid deposits in the senile plaques (SP). The NFTs are aggregates of hyperphosphorylated microtubule Tau protein. The amyloid deposits in the SP are the beta-amyloid (Abeta) peptides-Abeta40 and Abeta42. The Abeta peptides are derived from the amyloid precursor protein (APP) which is considered very important for the AD pathogenesis. In recent years, studies have focused on understanding the generation of Abeta peptides by the alpha-, beta- and gamma- secretase activity on APP, as cause and progression of both familial and sporadic AD (FAD and SAD). This review covers the trafficking and processing of APP, the amyloid cascade hypothesis in AD pathogenesis, the mutations in the genes encoding APP, PS1 and PS2 of early-onset and late-onset AD. The risk factor apolipoprotein E (ApoE) for AD and therapeutic anti-beta-amyloid vaccination strategies for prevention of AD are also discussed.
Alzheimer Disease
;
genetics
;
metabolism
;
pathology
;
therapy
;
Alzheimer Vaccines
;
immunology
;
Amyloid beta-Peptides
;
antagonists & inhibitors
;
genetics
;
immunology
;
metabolism
;
Amyloid beta-Protein Precursor
;
genetics
;
metabolism
;
Animals
;
Apolipoproteins E
;
genetics
;
Humans
;
Immunotherapy, Active
;
Membrane Proteins
;
genetics
;
Peptide Fragments
;
genetics
;
Plaque, Amyloid
;
pathology
;
Presenilin-1
;
Presenilin-2
10.Correlations Between Single Nucleotide Polymorphisms, Cognitive Dysfunction, and Postmortem Brain Pathology in Alzheimer's Disease Among Han Chinese.
Qian YANG ; Kang CHEN ; Hanlin ZHANG ; Wanying ZHANG ; Changlin GONG ; Qing ZHANG ; Pan LIU ; Tianyi SUN ; Yuanyuan XU ; Xiaojing QIAN ; Wenying QIU ; Chao MA
Neuroscience Bulletin 2019;35(2):193-204
In this study, the distribution of five Alzheimer's disease (AD)-related single nucleotide polymorphisms (SNPs) in the Han population was examined in combination with the evaluation of clinical cognition and brain pathological analysis. The associations among SNPs, clinical daily cognitive states, and postmortem neuropathological changes were analyzed in 110 human brains from the Chinese Academy of Medical Sciences/Peking Union Medical College (CAMS/PUMC) Human Brain Bank. APOE ε4 (OR = 4.482, P = 0.004), the RS2305421 GG genotype (adjusted OR = 4.397, P = 0.015), and the RS10498633 GT genotype (adjusted OR = 2.375, P = 0.028) were associated with a higher score on the ABC (Aβ plaque score, Braak NFT stage, and CERAD neuritic plaque score) dementia scale. These results advance our understanding of the pathogenesis of AD, the relationship between pathological diagnosis and clinical diagnosis, and the SNPs in the Han population for future research.
ADAM10 Protein
;
genetics
;
Adult
;
Aged
;
Aged, 80 and over
;
Alzheimer Disease
;
genetics
;
pathology
;
Amyloid Precursor Protein Secretases
;
genetics
;
Antiporters
;
genetics
;
Apolipoprotein E4
;
genetics
;
Asian Continental Ancestry Group
;
genetics
;
Brain
;
pathology
;
Cognitive Dysfunction
;
genetics
;
pathology
;
Female
;
Genetic Predisposition to Disease
;
Humans
;
Male
;
Membrane Proteins
;
genetics
;
Middle Aged
;
Polymorphism, Single Nucleotide