1.Effects of Tumor Necrosis Factor Alpha Blocker Adalimumab in Experimental Spinal Cord Injury.
Alp Ozgun BORCEK ; Soner CIVI ; Ozgur OCAL ; Ozlem GULBAHAR
Journal of Korean Neurosurgical Society 2015;57(2):73-76
OBJECTIVE: Tumor necrosis factor alpha (TNF-alpha) have proven effects in pathogenesis of neuroinflammation after spinal cord injury (SCI). Current study is designed to evaluate the effects of an anti-TNF-alpha agent, adalimumab, on spinal cord clip compression injury in rats. METHODS: Thirty two male adult Wistar rats were divided into four groups (sham, trauma, infliximab, and adalimumab groups) and SCI was introduced using an aneurysm clip. Animals in treatment groups received 5 mg/kg subcutaneous adalimumab and infliximab right after the trauma. Malondialdehyde (MDA) levels were studied in traumatized spinal cord tissues 72 hours after the injury as a marker of lipid peroxidation. RESULTS: Animals that received anti-TNF-alpha agents are found to have significantly decreased MDA levels. MDA levels were significantly different between the trauma and infliximab groups (p<0.01) and trauma and adalimumab groups (p=0.022). There was no significant difference in neurological evaluation of the rats using Tarlov scale. CONCLUSION: These results suggest that, like infliximab, adalimumab has favorable effects on lipid peroxidation induced by spinal cord trauma in rats.
Adult
;
Aneurysm
;
Animals
;
Humans
;
Lipid Peroxidation
;
Male
;
Malondialdehyde
;
Rats
;
Rats, Wistar
;
Spinal Cord
;
Spinal Cord Injuries*
;
Tumor Necrosis Factor-alpha*
;
Adalimumab
;
Infliximab
2.Evaluation of Aqueductal Patency in Patients with Hydrocephalus: Three-Dimensional High-Sampling-Efficiency Technique (SPACE) versus Two-Dimensional Turbo Spin Echo at 3 Tesla.
Murat UCAR ; Melike GURYILDIRIM ; Nil TOKGOZ ; Koray KILIC ; Alp BORCEK ; Yusuf ONER ; Koray AKKAN ; Turgut TALI
Korean Journal of Radiology 2014;15(6):827-835
OBJECTIVE: To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. MATERIALS AND METHODS: This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. RESULTS: The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. CONCLUSION: Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.
Adolescent
;
Adult
;
Aged
;
Child
;
Female
;
Humans
;
Hydrocephalus/*radiography
;
Imaging, Three-Dimensional
;
Magnetic Resonance Imaging
;
Magnetic Resonance Imaging, Cine
;
Male
;
Middle Aged
;
Retrospective Studies
;
Sensitivity and Specificity
;
Young Adult