1.A compact-sized surface EMG sensor for myoelectric hand prosthesis
Alok PRAKASH ; Shiru SHARMA ; Neeraj SHARMA
Biomedical Engineering Letters 2019;9(4):467-479
Myoelectric prosthesis requires a sensor that can reliably capture surface electromyography (sEMG) signal from amputees for its controlled operation. The main problems with the presently available EMG devices are their extremely high cost, large response time, noise susceptibility, less amplitude sensitivity, and larger size. This paper proposes a compact and affordable EMG sensor for the prosthetic application. The sensor consists of an electrode interface, signal conditioning unit, and power supply unit all encased in a single package. The performance of dry electrodes employed in the skin interface was compared with the conventional Ag/AgCl electrodes, and the results were found satisfactory. The envelope detection technique in the sensor based on the tuned RC parameters enables the generation of smooth, faster, and repeatable EMG envelope irrespective of signal strength and subject variability. The output performance of the developed sensor was compared with commercial EMG sensor regarding signal-to-noise ratio, sensitivity, and response time. To perform this, EMG data with both devices were recorded for 10 subjects (3 amputees and 7 healthy subjects). The results showed 1.4 times greater SNR values and 45% higher sensitivity of the developed sensor than the commercial EMG sensor. Also, the proposed sensor was 57% faster than the commercial sensor in producing the output response. The sEMG sensor was further tested on amputees to control the operation of a self-designed 3D printed prosthetic hand. With proportional control scheme, the myoelectric hand setup was able to provide quicker and delicate grasping of objects as per the strength of the EMG signal.
Amputees
;
Electric Power Supplies
;
Electrodes
;
Electromyography
;
Hand Strength
;
Hand
;
Humans
;
Noise
;
Prostheses and Implants
;
Reaction Time
;
Signal-To-Noise Ratio
;
Skin
2.Quality by Design approach for the investigation of critical characteristics of Phyllanthus emblica from different vicinities
Prakash Ramakrishnan ; Priya Masand ; Pooja Dhama ; Anurag ; Sunil Gupta ; Alok Sharma
Digital Chinese Medicine 2023;6(3):272-284
[Objective] To explore the application of Quality by Design (QbD) tools in assessing geographical variations of Phyllanthus emblica (P. emblica) from five distinct Indian states.
[Methods] In the current experiment, the Box-Behnken design with a reduced quartic model and 105 runs was employed with the use of the Design Expert software for randomized response surface mapping. Three different extraction methods (Soxhlet, maceration, and sonication) along with three solventst [distilled water, methanol, and water-methanol mixture (50 : 50 v/v)] were considered in the present study. The anti-oxidant activities, total flavonoid content (TFC), and total phenolic content (TPC) in the P. emblica were determined and analysed by gas chromatography-mass spectrometry (GC-MS) to identify the major components.
[Results] The QbD overlay plot showed that the extractive value of the P. emblica was no less than 30% w/w, 2,2-diphenyl-1-picrylhydrazyl (DPPH) no less than 60% mcg/mL (micrograms per millilitre), TFC no less than 75 mg QE/g (milligrams of quercetin equivalents per gram), and TPC no less than 80 mg GAE/g (milligrams of gallic acid equivalents per gram). Moreover, the GC-MS data confirmed the presence of variation in the bioactives of P. emblica extracts.
[Conclusion] The model was significant in describing the variation in extractive value, DPPH, TFC, and TPC. The QbD approach may tend to prioritize thoroughness in the extraction process, ultimately resulting in improved quality in the extracted products.